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Foreword

Mathematics is a subject which possibly finds itself in a unique position in
academia in that it is viewed as both an Art and a Science. Indeed, in different
universities, graduates in mathematics may receive Bachelor Degrees in Arts or
Sciences. This probably reflects the dual nature of the subject. On the one hand,
it may be studied as a subject in its own right. In this sense, its own beauty is
there for all to behold; some as serene as da Vinci’s “Madonna of the Rocks”,
other as powerful and majestic as Michelangelo’s glorious ceiling of the Sistine
Chapel, yet more bringing to mind the impressionist brilliance of Monet’s Water
Lily series. It is this latter example, with the impressionists interest in light,
that links up with the alternative view of mathematics; that view which sees
mathematics as the language of science, of physics in particular since physics is
that area of science at the very hub of all scientific endeavour, all other branches
being dependent on it to some degree. In this guise, however, mathematics is
really a tool and any results obtained are of interest only if they relate to what
is found in the real world; if results predict some effect, that prediction must be
verified by observation and/or experiment. Again, it may be remembered that
physics is really a collection of related theories. These theories are all manmade
and, as such, are incomplete and imperfect. This is where the work of Ruggero
Santilli enters the scientific arena.

Although “conventional wisdom” dictates otherwise, both the widely accepted
theories of relativity and quantum mechanics, particularly quantum mechanics,
are incomplete. The qualms surrounding both have been muted but possibly more
has emerged concerning the inadequacies of quantum mechanics because of the
people raising them. Notably, although it is not publicly stated too frequently,
Einstein had grave doubts about various aspects of quantum mechanics. Much of
the worry has revolved around the role of the observer and over the question of
whether quantum mechanics is an objective theory or not. One notable contrib-
utor to the debate has been that eminent philosopher of science, Karl Popper.
As discussed in my book, “Exploding a Myth”, Popper preferred to refer to the
experimentalist rather than observer, and expressed the view that that person
played the same role in quantum mechanics as in classical mechanics. He felt,
therefore, that such a person was there to test the theory. This is totally opposed
to the Copenhagen Interpretation which claims that “objective reality has evap-
orated” and “quantum mechanics does not represent particles, but rather our
knowledge, our observations, or our consciousness, of particles”. Popper points
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out that, over the years, many eminent physicists have switched allegiance from
the pro-Copenhagen view. In some ways, the most important of these people
was David Bohm, a greatly respected thinker on scientific matters who wrote a
book presenting the Copenhagen view of quantum mechanics in minute detail.
However, later, apparently under Einstein’s influence, he reached the conclusion
that his previous view had been in error and also declared the total falsity of
the constantly repeated dogma that the quantum theory is complete. It was,
of course, this very question of whether or not quantum mechanics is complete
which formed the basis of the disagreement between Einstein and Bohr; Einstein
stating “No”, Bohr “Yes”.

However, where does Popper fit into anything to do with Hadronic Mechanics?
Quite simply, it was Karl Popper who first drew public attention to the thoughts
and ideas of Ruggero Santilli. Popper reflected on, amongst other things, Chad-
wick’s neutron. He noted that it could be viewed, and indeed was interpreted
originally, as being composed of a proton and an electron. However, again as
he notes, orthodox quantum mechanics offered no viable explanation for such a
structure. Hence, in time, it became accepted as a new particle. Popper then
noted that, around his (Popper’s) time of writing, Santilli had produced an arti-
cle in which the “first structure model of the neutron” was revived by “resolving
the technical difficulties which had led, historically, to the abandonment of the
model”. It is noted that Santilli felt the difficulties were all associated with the
assumption that quantum mechanics applied within the neutron and disappeared
when a generalised mechanics is used. Later, Popper goes on to claim Santilli
to belong to a new generation of scientists which seemed to him to move on a
different path. Popper identifies quite clearly how, in his approach, Santilli dis-
tinguishes the region of the arena of incontrovertible applicability of quantum
mechanics from nuclear mechanics and hadronics. He notes also his most fas-
cinating arguments in support of the view that quantum mechanics should not,
without new tests, be regarded as valid in nuclear and hadronic mechanics.

Ruggero Santilli has devoted his life to examining the possibility of extending
the theories of quantum mechanics and relativity so that the new more general
theories will apply in situations previously excluded from them. To do this, he
has had to go back to the very foundations and develop new mathematics and
new mathematical techniques. Only after these new tools were developed was
he able to realistically examine the physical situations which originally provoked
this lifetime’s work. The actual science is his, and his alone, but, as with the
realization of all great endeavours, he has not been alone. The support and
encouragement he has received from his wife Carla cannot be exaggerated. In
truth, the scientific achievements of Ruggero Santiili may be seen, in one light,
as the results of a team effort; a team composed of Ruggero himself and Carla
Gandiglio in Santilli. The theoretical foundations of the entire work are contained
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in this volume; a volume which should be studied rigorously and with a truly
open mind by the scientific community at large. This volume contains work
which might be thought almost artistic in nature and is that part of the whole
possessing the beauty so beloved of mathematicians and great artists. However,
the scientific community should reserve its final judgement until it has had a
chance to view the experimental and practical evidence which may be produced
later in support of this elegant new theoretical framework.

Jeremy Dunning-Davies,
Physics Department,
University of Hull,
England.
September 8, 2007



Preface

The author has indicated various times in his works that Albert Einstein has
been the biggest scientist of the 20-th century, but also the most exploited scientist
in history, because organized academic, financial and ethnic interests on Einstein
have pushed the validity of his views way beyond the conditions of his original
conception, by therefore turning what is supposed to be a serious scientific process
into a pool of often ascientific conduits generally manipulated for personal gains.

This volume presents a solution of one of the several scientific imbalances of
historical proportions caused by said ascientific interests in science, the abuse of
academic authority and public funds to impose Einstein ’s special and general
relativity for the treatment of antimatter, while in the scientific reality Einsteinian
theories have no means for a quantitative classical differentiation between neutral
matter and antimatter, and even when assumed for charged classical particles,
their operator image is a particle (rather than the correct charge conjugated
antiparticle) with the wrong sign of the charge.

To defend the name of Albert Einstein, it must be noted that antimatter had
yet to be discovered at the time of the formulation of his theories. Hence, the
entire responsibility of this large scientific imbalance, and the expected severe
judgment by posterity, must solely rest with said organized academic, financial
and ethnic interests that extended for personal gains Einstein’s views beyond the
conditions of their original conception without a serious scrutiny.

The solution presented in this volume of the historical imbalance between mat-
ter and antimatter is based on the necessary development of a new mathematics,
today called Santilli isodual mathematics, allowing for the first time the classical
representation of antimatter as an anti-isomorphic image of that for matter. The
isodual conjugation then persists under quantization, where it turns out to be
equivalent to charge conjugation, thus restoring a full equivalence and scientific
democracy in the treatment of matter and antimatter at all levels, from Newto-
nian mechanics to second quantization. The resulting isodual theory of antimatter
then verifies, by conception and construction, all available experimental data on
antimatter at the classical and operator level.

It should be stressed that, by no mans, the isodual theory of antimatter is
presented as final, or complete or unique, because so many intriguing problems
remain open. However, its dismissal in the absence of an alternative broadening
of Einsteinian doctrines must be denounced as scientific corruption for personal
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gains because the appropriate broadening of Einsteinian doctrines for antimatter
is indeed open to scientific debates, but not its need.

An illustration of the damage caused to human knowledge by said ascien-
tific interests on Einstein is given by antigravity. Said interests have dismissed,
disrupted and jeopardized for over half a century professional research on the pos-
sible antigravity between matter and antimatter (here referred to gravitational
repulsion) on grounds that it is not predicted by Einstein’s theories.

The need to contain said ascientific interests is rendered evident by the above
indicated fact that Einstein’s special and general relativities have no means for
a quantitative classical differentiations between a neutral matter star and its
antimatter counterpart. Under these conditions, the abuse of Einstein’s name
must be denounced as scientific corruption for personal gains by any person who
cares about human dignity, let alone scientific knowledge.

A primary objective of this volume is to show that, once ascientific interests in
science are cut out, and a theory for the proper classical and operator formulation
of antimatter is worked out, gravitational repulsion between matter and antimatter
is mandated by all available theoretical and experimental evidence, with no credible
objection on record.

In this volume, we also review a proposed experiment to test the gravity of
positrons in horizontal flight in a vacuum tube that has been qualified by in-
dependent experimentalists in the field as being readily feasible with current
technologies and, above all, resolutory.

Yet, even the consideration of this so basic an experiment has been denied by
SLAC, CERN, JINR and various other laboratories throughout the world because
such a consideration would imply doubts on the universal validity of Einsteinian
doctrines, by illustrating in this way the alarming dimension, diversification and
capillary nature of ascientific interests at physics laboratories around the world.

The final objective of this volume is to illustrate that the expected experimental
verification of antigravity between matter and antimatter will imply advances in
human knowledge simply beyond our imagination at this time, such as a fully
causal spacetime geometric locomotion, here referred to motion in space and time
via the alteration of the local geometry, although not for ordinary matter or
antimatter, but for a particular form of matter and antimatter called isoselfdual.

It is written in history that, following the achievement of control with pro-
tracted impunity, individuals lose the understanding of the self-damaging char-
acter of their actions. It is also written in history that people have the structure
they want or deserve.

In view of the above ascientific condition of science, no basic advance on anti-
matter, antigravity and other far reaching frontiers is possible without the joint
consideration of issues pertaining to scientific ethics and accountability particu-
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larly when ascientific interests in science are permitted to operate, by vile sub-
servience or complicity, under public financial support.

To put it bluntly, the judgment expected by posterity on our contemporary
scientific community will crucially depend on its capability to identify, denounce
and contain ascientific and consequently asocial interests in science.

Ruggero Maria Santilli
January 19, 2008
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Chapter 2

ISODUAL THEORY OF
POINT-LIKE ANTIPARTICLES

2.1 ELEMENTS OF ISODUAL MATHEMATICS
2.1.1 Isodual Unit, Isodual Numbers and

Isodual Fields
The first comprehensive study of the isodual theory for point-like antiparticles

has been presented by the author in monograph [34]. However, the field is sub-
jected to continuous developments following its first presentation in papers [1] of
1985. Hence, it is important to review the most recent formulation of the isodual
mathematics in sufficient details to render this monograph self-sufficient.

In this section, we identify only those aspects of isodual mathematics that are
essential for the understanding of the physical profiles presented in the subsequent
sections of this chapter. We begin with a study of the most fundamental elements
of all mathematical and physical formulations, units, numbers and fields, from
which all remaining formulations can be uniquely and unambiguously derived via
simple compatibility arguments. To avoid un-necessary repetitions, we assume
the reader has a knowledge of the basic mathematics used for the classical and
operator treatment of matter, including a knowledge of the fields of real, complex
and quaternionic numbers. The symbol † usec in this chapter denotes conven-
tional Hermitean conjugation, namely, transpose t plus complex conjugation c.
Hence, for real numbers n we have n† = n, for complex numbers a we have a† = ac

and for qauternions q we have q† = qtc.

DEFINITION 2.1.1: Let F = F (a,+,×) be a field (of characteristic zero),
namely a ring with elements given by real number a = n, F = R(n,+,×), complex
numbers A = c, F = C(c,+,×), or quaternionic numbers a = q, F = Q(q,+,×),
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with conventional sum a+ b verifying the commutative law

a+ b = b+ a = c ∈ F, (2.1.1)

the associative law
(a+ b) + c = a+ (b+ c) = d ∈ F, (2.1.2)

conventional product a× b verifying the associative law

(a× b)× c = a× (b× c) = e ∈ F, (2.1.3)

(but not necessarily the commutative law, a× b 6= b×a since the latter is violated
by quaternions), and the right and left distributive laws

(a+ b)× c = a× c+ b× c = f ∈ F, (2.1.4a)

a× (b+ c) = a× b+ a× c = g ∈ F, (2.1.4b)

left and right additive unit 0,

a+ 0 = 0 + a = a ∈ F, (2.1.5)

and left and right multiplicative unit I,

a× I = I × a = a ∈ F, (2.1.6)

∀a, b, c ∈ F . Santilli’s isodual fields (first introduced in Refs. [1] and then
presented in details in Ref. [2]) are rings F d = F d(ad,+d,×d) with elements
given by isodual numbers

ad = −a†, ad ∈ F, (2.1.7)

with associative and commutative isodual sum

ad +d bd = −(a+ b)† = cd ∈ F d, (2.1.8)

associative and distributive isodual product

ad ×d bd = ad × (Id)−1 × bd = cd ∈ F d, (2.1.9)

additive isodual unit 0d = 0,

ad +d 0d = 0d +d ad = ad, (2.1.10)

and multiplicative isodual unit Id = −I†,

ad ×d Id = Id ×d ad = ad,∀ad, bd ∈ F d. (2.1.11)

The proof of the following property is elementary.
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LEMMA 2.1.1 [1,2]: Isodual fields are fields, namely, if F is a field, its image
F d under the isodual map is also a field.

The above lemma establishes the property (first identified in Refs. [1]) that the
axioms of a field do not require that the multiplicative unit be necessarily positive-
definite, because the same axioms are also verified by negative-definite units. The
proof of the following property is equally simple.

LEMMA 2.1.2 [1,2]: Fields F and their isodual images F d are anti-isomorphic
to each other.

Lemmas 2.1.1 and 1.2.2 illustrate the origin of the name “isodual mathemat-
ics”. In fact, to represent antimatter the needed mathematics must be a suitable
“dual” of conventional mathematics, while the prefix “iso” is used in its Greek
meaning of preserving the original axioms.

It is evident that for real numbers we have

nd = −n, (2.1.12)

while for complex numbers we have

cd = (n1 + i× n2)d = −n1 + i× n2 = −c̄, (2.1.13)

with a similar formulation for quaternions.
It is also evident that, for consistency, all operations on numbers must be

subjected to isoduality when dealing with isodual numbers. This implies: the
isodual powers

(ad)nd
= ad ×d ad ×d ad . . . (2.1.14)

(n times, with n an integer); the isodual square root

ad(1/2)d
= −

√
−a†

†
, ad(1/2)d ×d ad(1/2)d

= ad, 1d(1/2)d
= −i; (2.1.15)

the isodual quotient

ad/dbd = −(a†/b†) = cd, bd ×d cd = ad; (2.1.16)

etc.
An important property for the characterization of antimatter is the following:

LEMMA 2.1.3. [2]: isodual fields have a negative-definite norm, called isodual
norm,

|ad|d = |a†| × Id = −(aa†)1/2 < 0, (2.1.17)
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where | . . . | denotes the conventional norm.

For isodual real numbers we therefore have the isodual isonorm

|nd|d = −|n| < 0, (2.1.18)

and for isodual complex numbers we have

|cd|d = −|c̄| = −(cc̄)1/2 = −(n2
1 + n2

2)
1/2. (2.1.19)

LEMMA 2.1.4 [2]: All quantities that are positive-definite when referred to
positive units and related fields of matter (such as mass, energy, angular momen-
tum, density, temperature, time, etc.) become negative-definite when referred to
isodual units and related isodual fields of antimatter.

As recalled Chapter 1, antiparticles have been discovered in the negative-energy
solutions of Dirac’s equation and they were originally thought to evolve backward
in time (Stueckelberg, Feynman, and others, see Refs. [1,2] of Chapter 1). The
possibility of representing antiparticles via isodual methods is therefore visible
already from these introductory notions.

The main novelty is that the conventional treatment of negative-definite energy
and time was (and still is) referred to the conventional unit +1. This leads to a
number of contradictions in the physical behavior of antiparticles.

By comparison, negative-definite physical quantities of isodual theories are re-
ferred to a negative-definite unit Id < 0. This implies a mathematical and phys-
ical equivalence between positive-definite quantities referred to positive-definite
units, characterizing matter, and negative-definite quantities referred to negative-
definite units, characterizing antimatter. These foundations then permit a novel
characterization of antimatter beginning at the Newtonian level, and then per-
sisting at all subsequent levels.

DEFINITION 2.1.2 [2]: A quantity is called isoselfdual when it coincides with
its isodual.

It is easy to verify that the imaginary unit is isoselfdual because

id = −i† = −ī = −(−i) = i. (2.1.20)

This property permits a better understanding of the isoduality of complex
numbers that can be written explicitly

cd = (n1 + i× n2)d = nd
1 + id ×d nd

2 = −n1 + i× n2 = −c̄. (2.1.21)
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The above property will be important to prove the equivalence of isoduality and
charge conjugation at the operator level.

As we shall see, isoselfduality is a new fundamental view of nature with deep
physical implications, not only in classical and quantum mechanics but also in
cosmology. For instance we shall see that Dirac’s gamma matrices are isoselfdual,
thus implying a basically new interpretation of this equation that has remained
unidentified for about one century. We shall also see that, when applied to
cosmology, isoselfduality implies equal distribution of matter and antimatter in
the universe, with identically null total physical characteristic, such as identically
null total time, identically null total mass, etc.

We should also indicate that we have assumed the isoduality of the multiplica-
tion, × → ×d = ×(−1)× = −×, but not that of the sum, + → +d = +(−1)+ =
−. This approach may not appear entirely motivated to the mathematically in-
clined reader because fields are invariant under the above defined isoduality of the
sum due to the invariance of the additive unit, 0 → 0d ≡ 0 (although fields are
not invariant under the isoduality of the product due to the lack of invariance of
the multiplicative unit, 1 → 1d = −1).

The above decision is motivated by pragmatic, rather than mathematical argu-
ments and, more specifically, for compatibility with the more general isofields and
genofields, studied in the following chapters. In fact, at the latter broader levels,
we have the loss of the invariance of the axioms of a field under these broader
liftings of the sum. In turn, the loss of the field axioms cause the consequential
inapplicability of the theory for physical applications as currently known, that
is, based on ”numbers” as rings verifying the axioms of a field, thus admitting a
right and left, well defined, multiplicative unit representing the selected units of
measurements.

It should also be stressed that, to avoid apparent inconsistencies, the isod-
ual conjugation must be applied to all numbers and all their multiplications (or
divisions). For instance, the isodual of a real numbers n = n × 1 is given by
nd ×d 1d = −n× 1 = −n and not by nd × 1d = n.

We assume the reader is aware of the emergence here of new numbers, those
with a negative unit, that have no connection with ordinary negative numbers
and are the true foundations of the isodual theory of antimatter.

2.1.2 Isodual Functional Analysis
All conventional and special functions and transforms, as well as functional

analysis at large, must be subjected to isoduality for consistent applications,
resulting in the simple, yet unique and significant isodual functional analysis,
studied by Kadeisvili [3], Santilli [4] and others.

We here mention the isodual trigonometric functions

sind θd = − sin(−θ), cosd θd = − cos(−θ), (2.1.22)
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with related basic property

cosd 2d θd +d sind 2d θd = 1d = −1, (2.1.23)

the isodual hyperbolic functions

sinhdwd = − sinh(−w), coshdwd = − cosh(−w), (2.1.24)

with related basic property

coshd 2dwd −d sinhd 2dwd = 1d = −1, (2.1.25)

the isodual logarithm and the isodual exponentiation defined respectively by

logd nd = − log(−n), (2.1.26a)

eXd
d

= 1d +Xd/d1!d +Xd2d
/d2!d + . . . = −eX , (2.1.26b)

etc. Interested readers can then easily construct the isodual image of special
functions, transforms, distributions, etc.

2.1.3 Isodual Differential and Integral Calculus
Contrary to a rather popular belief, the differential calculus is indeed depen-

dent on the assumed unit. This property is not so transparent in the conventional
formulation because the basic unit is the trivial number +1. However, the de-
pendence of the unit emerges rather forcefully under its generalization.

The isodual differential calculus, first introduced by Santilli in Ref. [5a], is
characterized by the isodual differentials

ddxk = Id × dxk = −dxk, ddxk = −dxk, (2.1.27)

with corresponding isodual derivatives

∂d/d∂dxk = −∂/∂xk, ∂d/d∂dxk = −∂/∂xk, (2.1.28)

and related isodual properties.
Note that conventional differentials are isoselfdual, i.e.,

(dxk)d = ddxkd ≡ d xk, (2.1.29)

but derivatives are not isoselfdual,

[∂f/∂xk]d = −∂dfd/d∂dxkd. (2.1.30)

The above properties explain why the isodual differential calculus remained
undiscovered for centuries.

Other notions, such as the isodual integral calculus, can be easily derived and
shall be assumed as known hereon.
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2.1.4 Lie-Santilli Isodual Theory
Let L be an n-dimensional Lie algebra in its regular representation with uni-

versal enveloping associative algebra ξ(L), [ξ(L)]− ≈ L, n-dimensional unit I =
Diag.(1, 1, . . . , 1), ordered set of Hermitian generators X = X† = {Xk},
k = 1, 2 , . . . , n, conventional associative product Xi × Xj , and familiar Lie’s
Theorems over a field F (a,+,×).

The Lie-Santilli isodual theory was first submitted in Ref. [1] and then studied
in Refs. [4-7] as well as by other authors [23-31]. The isodual universal associative
algebra [ξ(L)]d is characterized by the isodual unit Id, isodual generators Xd =
−X, and isodual associative product

Xd
i ×d Xd

j = −Xi ×Xj , (2.1.31)

with corresponding infinite-dimensional basis characterized by the Poincaré-Birk-
hoff-Witt-Santilli isodual theorem

Id, Xd
i ×d Xd

j , i ≤ j; Xd
i ×d Xd

j ×Xd
k , i ≤ j ≤ k, . . . (2.1.32)

and related isodual exponentiation of a generic quantity Ad

ed
Ad

= Id +Ad/d1!d +Ad ×d Ad/d2!d + . . . = −eA†
, (2.1.33)

where e is the conventional exponentiation.
The attached Lie-Santilli isodual algebra Ld ≈ (ξd)− over the isodual field

F d(ad,+d,×d) is characterized by the isodual commutators [1]

[Xd
i ,

dXd
j ] = −[Xi, Xj ] = Ckd

ij ×d Xd
k . (2.1.34)

with classical realizations given in Section 2.2.6.
Let G be a conventional, connected, n-dimensional Lie transformation group

on a metric (or pseudo-metric) space S(x, g, F ) admitting L as the Lie algebra in
the neighborhood of the identity, with generators Xk and parameters w = {wk}.

The Lie-Santilli isodual transformation group Gd admitting the isodual Lie
algebra Ld in the neighborhood of the isodual identity Id is the n-dimensional
group with generatorsXd = {−Xk} and parameters wd = {−wk} over the isodual
field F d with generic element [1]

Ud(wd) = ed
id×dwd×dXd

= −ei×(−w)×X = −U(−w). (2.1.35)

The isodual symmetries are then defined accordingly via the use of the isod-
ual groups Gd and they are anti-isomorphic to the corresponding conventional
symmetries, as desired. For additional details, one may consult Ref. [4,5b].

In this chapter we shall therefore use the conventional Poincaré, internal and
other symmetries for the characterization of matter, and the Poincaré-Santilli,
internal and other isodual symmetries for the characterization of antimatter.
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2.1.5 Isodual Euclidean Geometry
Conventional (vector and) metric spaces are defined over conventional fields.

It is evident that the isoduality of fields requires, for consistency, a corresponding
isoduality of (vector and) metric spaces. The need for the isodualities of all
quantities acting on a metric space (e.g., conventional and special functions and
transforms, differential calculus, etc.) becomes then evident.

DEFINITION 2.1.3: Let S = S(x, g,R) be a conventional N -dimensional met-
ric or pseudo-metric space with local coordinates x = {xk}, k = 1, 2 , . . . , N ,
nowhere degenerate, sufficiently smooth, real-valued and symmetric metric g(x, . . .)
and related invariant

x2 = (xi × gij × xj)× I, (2.1.36)

over the reals R. The isodual spaces, first introduced in Ref. [1] (see also Refs. [4,5]
and, for a more recent account, Ref. [22]), are the spaces Sd(xd, gd, Rd) with
isodual coordinates xd = xd = −xt (where t stands for transposed), isodual metric

gd(xd, . . .) = −g†(−x†, . . .) = −g(−xt, . . .), (2.1.37)

and isodual interval

(x− y)d2 d
= [(x− y)id ×d gd

ij ×d (x− y)jd]× Id =

= [(x− y)i × gd
ij × (x− y)j ]× Id, (2.1.38)

defined over the isodual field Rd = Rd(nd,+d,×d) with the same isodual isounit
Id.

The basic nonrelativistic space of our analysis is the three-dimensional isodual
Euclidean space [1,9],

Ed(rd, δd, Rd) : rd = {rkd} = {−rk} = {−x,−y,−z}, (2.1.39a)

δd = −δ = Diag.(−1,−1,−1),

Id = −I = Diag.(−1,−1,−1). (2.1.39b)

The isodual Euclidean geometry is the geometry of the isodual space Ed over
Rd and it is given by a step-by-step isoduality of all the various aspects of the
conventional geometry (see monograph [5a] for details).

By recalling that the norm on Rd is negative-definite, the isodual distance
among two points on an isodual line is also negative definite and it is given by

Dd = D × Id = −D, (2.1.40)

where D is the conventional distance. Similar isodualities apply to all remain-
ing notions, including the notions of parallel and intersecting isodual lines, the
Euclidean axioms, etc.
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The isodual sphere with radius Rd = −R is the perfect sphere on Ed over Rd

and, as such, it has negative radius (Figure 2.1),

Rd2d = (xd2d + yd2d + zd2d)× Id =

= (x2 + y2 + z2)× I = R2. (2.1.41)

Note that the above expression coincides with that for the conventional sphere.
This illustrates the reasons, following about one century of studies, the isodual
rotational group and symmetry where identified for the first time in Ref. [1].
Note, however, that the latter result required the prior discovery of new numbers,
those with a negative unit.

A similar characterization holds for other isodual shapes characterizing anti-
matter in our isodual theory.

LEMMA 2.1.5: The isodual Euclidean geometry on Ed over Rd is anti-iso-
morphic to the conventional geometry on E over R.

The group of isometries of Ed over Rd is the isodual Euclidean group Ed(3) =
Rd(θd) ×d T d(3) where Rd(θ) is the isodual group of rotations first introduced
in Ref. [1], and T d(3) is the isodual group of translations (see also Ref. [5a] for
details).

2.1.6 Isodual Minkowskian Geometry
LetM(x, η,R) be the conventional Minkowski spacetime with local coordinates

x = (rk, t) = (xµ), k = 1, 2, 3, µ = 1, 2, 3, 4, metric η = Diag.(1, 1, 1,−1) and
basic unit I = Diag.(1, 1, 1, 1) on the reals R = R(n, +, ×).

The Minkowski-Santilli isodual spacetime, first introduced in Ref. [7] and stud-
ied in details in Ref. [8], is given by

Md(xd, ηd, Rd) : xd = {xµd} = {xµ × Id} = {−r,−cot} × I, (2.1.42)

with isodual metric and isodual unit

ηd = −η = Diag.(−1,−1,−1,+1), (2.1.43a)

Id = Diag.(−1,−1,−1,−1). (2.1.43b)

The Minkowski-Santilli isodual geometry [8] is the geometry of isodual spaces
Md over Rd. The new geometry is also characterized by a simple isoduality of
the conventional Minkowskian geometry as studied in details in memoir.

The fundamental symmetry of this chapter is given by the group of isometries
of Md over Rd, namely, the Poincaré-Santilli isodual symmetry [7,8]

P d(3.1) = Ld(3.1)× T d(3.1), (2.1.44)
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Figure 2.1. A schematic view of the isodual sphere on isodual Euclidean spaces over isodual
fields. The understanding of the content of this chapter requires the knowledge that the isodual
sphere and the conventional sphere coincide when inspected by an observer either in the Eu-
clidean or in the isodual Euclidean space, due to the identity of the related expressions (2.1.36)
and (2.1.38). This identity is at the foundation of the perception that antiparticles “appear” to
exist in our space, while in reality they belong to a structurally different space coexisting within
our own, thus setting the foundations of a “multidimensional universe” coexisting in the same
space of our sensory perception. The reader should keep in mind that the isodual sphere is the
idealization of the shape of an antiparticle used in this monograph.

where Ld(3.1) is the Lorentz-Santilli isodual group and T d(3.1) is the isodual
group of translations.

2.1.7 Isodual Riemannian Geometry
Consider a Riemannian space <(x, g,R) in (3 + 1) dimensions [32] with basic

unit I = Diag.(1, 1, 1, 1), nowhere singular and symmetric metric g(x) and
related Riemannian geometry in local formulation (see, e.g., Ref. [27]).

The Riemannian-Santilli isodual spaces (first introduced in Ref. [11]) are given
by

<d(xd, gd, Rd) : xd = {−xµ},

gd = −g(x), g ∈ <(x, g,R),

Id = Diag.(−1,−1,−1,−1) (2.1.45)

with interval
x2d = [xdt ×d gd(xd)×d xd]× Id =

= [xt × gd(xd)× x]× Id ∈ Rd, (2.1.46)

where t stands for transposed.



HADRONIC MATHEMATICS, MECHANICS AND CHEMISTRY 173

The Riemannian-Santilli isodual geometry [8] is the geometry of spaces <d over
Rd, and it is also given by step-by-step isodualities of the conventional geome-
try, including, most importantly, the isoduality of the differential and exterior
calculus.

As an example, an isodual vector field Xd(xd) on <d is given by Xd(xd) =
−Xt(−xt). The isodual exterior differential of Xd(xd) is given by

DdXkd(xd) = ddXkd(xd) + Γd
i
k
j ×d Xid ×d ddxjd = DXk(−x), (2.1.47)

where the Γd’s are the components of the isodual connection. The isodual covari-
ant derivative is then given by

Xid(xd)|dk = ∂dXid(xd)/d∂dxkd + Γdi
jk ×d Xjd(xd) = −Xi(−x)|k . (2.1.48)

The interested reader can then easily derive the isoduality of the remaining
notions of the conventional geometry.

It is an instructive exercise for the interested reader to work out in detail the
proof of the following:

LEMMA 2.1.6 [8]: The isodual image of a Riemannian space <d(xd, gd, Rd)
is characterized by the following maps:

Basic Unit

I → Id = −I,

Metric

g → gd = −g, (2.1.49a)

Connection Coefficients

Γklh → Γd
klh = −Γklh, (2.1.49b)

Curvature Tensor

Rlijk → Rd
lijk = −Rlijk, (2.1.49c)

Ricci Tensor

Rµν → Rd
µν = −Rµν , (2.1.49d)

Ricci Scalar

R → Rd = R, (2.1.49e)

Einstein−Hilbert Tensor

Gµν → Gd
µν = −Gµν , (2.1.49f)
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Electromagnetic Potentials

Aµ → Ad
µ = −Aµ, (2.1.49g)

Electromagnetic F ield

Fµν → F d
µν = −Fµν , (2.1.49h)

ElmEnergy −Momentum Tensor

Tµν → T d
µν = −Tµν , (2.1.49i)

In summary, the geometries significant for this study are: the conventional Eu-
clidean, Minkowskian and Riemannian geometries used for the characterization
of matter; and the isodual Euclidean, Minkowskian and Riemannian geometries
used for the characterization of antimatter.

The reader can now begin to see the achievement of axiomatic compatibility
between gravitation and electroweak interactions that is permitted by the isodual
theory of antimatter. In fact, the latter is treated via negative-definite energy-
momentum tensors, thus being compatible with the negative-energy solutions
of electroweak interactions, therefore setting correct axiomatic foundations for a
true grand unification studied in the next chapter.

2.2 CLASSICAL ISODUAL THEORY OF
POINT-LIKE ANTIPARTICLES

2.2.1 Basic Assumptions
Thanks to the preceding study of isodual mathematics, we are now sufficiently

equipped to resolve the scientific impasse caused by the absence of a classical
theory of antimatter studied in Section 1.1.

As it is well known, the contemporary treatment of matter is characterized
by conventional mathematics, here referred to ordinary numbers, fields, spaces,
etc. with positive units and norms, thus having positive characteristics of mass,
energy, time, etc.

In this chapter we study the characterization of antimatter via isodual numbers,
fields, spaces, etc., thus having negative-definite units and norms. In particular,
all characteristics of matter (and not only charge) change sign for antimatter
when represented via isoduality.

The above characterization of antimatter evidently provides the correct con-
jugation of the charge at the desired classical level. However, by no means, the
sole change of the sign of the charge is sufficient to ensure a consistent classical
representation of antimatter. To achieve consistency, the theory must resolve
the main problematic aspect of current classical treatments, the fact that their
operator image is not the correct charge conjugate state (Section 2.1).
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The above problematic aspect is indeed resolved by the isodual theory. The
main reason is that, jointly with the conjugation of the charge, isoduality also
conjugates all other physical characteristics of matter. This implies two channels
of quantization, the conventional one for matter and a new isodual quantization
for antimatter (see Section 2.3) in such a way that its operator image is indeed
the charge conjugate of that of matter.

In this section, we study the physical consistency of the theory in its classical
formulation. The novel isodual quantization, the equivalence of isoduality and
charge conjugation and related operator issues are studied in the next section.

Beginning our analysis, we note that the isodual theory of antimatter resolves
the traditional obstacles against negative energies and masses. In fact, particles
with negative energies and masses measured with negative units are fully equiva-
lent to particles with positive energies and masses measured with positive units.
This result has permitted the elimination of sole use of second quantization for
the characterization of antiparticles because antimatter becomes treatable at all
levels, including second quantization.

The isodual theory of antimatter also resolves the additional, well known,
problematic aspects of motion backward in time. In fact, time moving backward
measured with a negative unit is fully equivalent on grounds of causality to time
moving forward measured with a positive unit.

This confirms the plausibility of the first conception of antiparticles by Stueck-
elberg and others as moving backward in time (see the historical analysis in
Ref. [1] of Chapter 1), and creates new possibilities for the ongoing research on
the so-called “spacetime machine” studied in Chapter 5.

In this section, we construct the classical isodual theory of antimatter at the
Newtonian, Lagrangian, Hamiltonian, Galilean, relativistic and gravitational lev-
els; we prove its axiomatic consistency; and we verify its compatibility with avail-
able classical experimental evidence (that dealing with electromagnetic interac-
tions only). Operator formulations and their experimental verifications will be
studied in the next section.

2.2.2 Need for Isoduality to Represent All Time
Directions

It is popularly believed that time has only two directions, the celebrated Ed-
dington’s time arrows. In reality, time has four different directions depending on
whether motion is forward or backward and occurs in the future or in the past,
as illustrated in Figure 2.2. In turn, the correct use of all four different directions
of time is mandatory, for instance, in serious studies of bifurcations, as we shall
see.
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Figure 2.2. A schematic view of the “four different directions of time”, depending on whether
motion is forward or backward and occurs in the future or in the past. Due to the sole existence
of one time conjugation, time reversal, the theoretical physics of the 20-th century missed two
of the four directions of time, resulting in fundamental insufficiencies ranging from the lack
of a deeper understanding of antiparticles to basic insufficiencies in biological structures and
excessively insufficient cosmological views. It is evident that isoduality can indeed represent the
two missing time arrows and this illustrates a basic need for the isodual theory.

It is evident that theoretical physics of the 20-th century could not explain all
four directions of time, since it possessed only one conjugation, time reversal, and
this explains the reason the two remaining directions of time were ignored.

It is equally evident that isoduality does indeed permit the representation of
the two missing directions of time, thus illustrating its need.

We assume the reader is now familiar with the differences between time reversal
and isoduality. Time reversal changes the direction of time while keeping the
underlying space and units unchanged, while isoduality changes the direction of
time while mapping the underlying space and units into different forms.

Unless otherwise specified, through the rest of this volume time t will be in-
dicate motion forward in future times, −t will indicate motion backward in past
times, td will indicate motion backward from future times, and −td will indicate
motion forward from past times.

2.2.3 Experimental Verification of the Isodual Theory
of Antimatter in Classical Physics

The experimental verification of the isodual theory of antimatter at the clas-
sical level is provided by the compliance of the theory with the only available
experimental data, those on Coulomb interactions.

For that purpose, let us consider the Coulomb interactions under the custom-
ary notation that positive (negative) forces represent repulsion (attraction) when
formulated in conventional Euclidean space.
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Under such an assumption, the repulsive Coulomb force among two particles
of negative charges −q1 and −q2 in Euclidean space E(r, δ, R) is given by

F = K × (−q1)× (−q2)/r × r > 0, (2.2.1)

where K is a positive constant whose explicit value (here irrelevant) depends
on the selected units, the operations of multiplication × and division / are the
conventional ones of the underlying field R(n, +, ×).

Under isoduality to Ed(rd, δd, Rd) the above law is mapped into the form

F d = Kd ×d (−q1)d ×d (−q2)d/drd ×d rd = −F < 0, (2.2.2)

where ×d = −× and /d = −/ are the isodual operations of the underlying field
Rd(nd, +, ×d).

But the isodual force F d = −F occurs in the isodual Euclidean space and it is,
therefore, defined with respect to the unit−1. This implies that the reversal of the
sign of a repulsive force measured with a negative unit also describes repulsion.
As a result, isoduality correctly represents the repulsive character of the Coulomb
force for two antiparticles with positive charges, a result first achieved in Ref. [9].

The formulation of the cases of two particles with positive charges and their
antiparticles with negative charges is left to the interested reader.

The Coulomb force between a particle and an antiparticle can only be computed
by projecting the antiparticle in the conventional space of the particle or vice-
versa. In the former case we have

F = K × (−q1)× (−q2)d/r × r < 0, (2.2.3)

thus yielding an attractive force, as experimentally established. In the projection
of the particle in the isodual space of the antiparticle, we have

F d = Kd ×d (−q1)×d (−q2)d/drd ×d rd > 0. (2.2.4)

But this force is now measured with the unit -1, thus resulting in being again
attractive.

The study of Coulomb interactions of magnetic poles and other classical ex-
perimental data is left to the interested reader.

In conclusion, the isodual theory of antimatter correctly represents all available
classical experimental evidence in the field.

2.2.4 Isodual Newtonian Mechanics
A central objective of this section is to show that the isodual theory of antimatter
resolves the scientific imbalance of the 20-th century between matter and anti-
matter, by permitting the study of antimatter at all levels as occurring for matter.
Such an objective can only be achieved by first establishing the existence of a
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Newtonian representation of antimatter subsequently proved to be compatible
with known operator formulations.

As it is well known, the Newtonian treatment of N point-like particles is based
on a 7N -dimensional representation space given by the Kronecker products of the
Euclidean spaces of time t, coordinates r and velocities v (for the conventional
case see Refs. [33,34]),

S(t, r, v) = E(t, Rt)× E(r, δ, Rr)× E(v, δ, Rv), (2.2.5)

where
r = (rk

a) = (r1a, r
2
a, r

3
a) = (xa, ya, za), (2.2.6a)

v = (vka) = (v1a, v2a, v3a) = (vxa, vua, vza) = dr/dt, (2.2.6b)

δ = Diag.(1, 1, 1), k = 1, 2, 3, a = 1, 2, 3, . . . , N, (2.2.6c)

and the base fields are trivially identical, i.e., Rt = Rr = Rv, since all units are
assumed to have the trivial value +1, resulting in the trivial total unit

Itot = It × Ir × Iv = 1× 1× 1 = 1. (2.2.7)

The resulting basic equations are then given by the celebrated Newton’s equations
for point-like particles

ma × dvka/dt = Fka(t, r, v), k = 1, 2, 3, a = 1, 2, 3, . . . , N. (2.2.8)

The basic space for the treatment of n antiparticles is given by the 7N -
dimensional isodual space [9]

Sd(td, rd, vd) = Ed(td, Rd
t )× Ed(rd, δd, Rd)× Ed(vd, δd, Rd), (2.2.9)

with isodual unit and isodual metric

Id
Tot = Id

t × Id
r × Id

v , (2.2.10a)

Id
t = −1, Id

r = Id
v = Diag.(−1,−1,−1), (2.2.10b)

δd = Diag.(1d, 1d, 1d) = Diag.(−1,−1,−1). (2.2.10c)

We reach in this way the basic equations of this chapter, today known as the
Newton-Santilli isodual equations for point-like antiparticles, first introduced in
Ref. [4],1

md
a ×d ddvd

ka/
dddtd = F d

ka(t
d, rd, vd), (2.2.11)

k = x, y, z, a = 1, 2, . . . , n,

1Note as necessary pre-requisites of the new Newton’s equations, the prior discovery of isodual numbers,
spaces and differential calculus.
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whose experimental verification has been provided in the preceding section.
It is easy to see that the isodual formulation is anti-isomorphic to the conven-

tional version, as desired, to such an extent that the two formulations actually
coincide at the abstract, realization-free level.

Despite this axiomatic simplicity, the physical implications of the isodual the-
ory of antimatter are rather deep. To begin their understanding, note that
throughout the 20-th century it was believed that matter and antimatter ex-
ist in the same spacetime. In fact, as recalled earlier, charge conjugation is a
map of our physical spacetime into itself.

One of the first physical implications of the Newton-Santilli isodual equations
is that antimatter exists in a spacetime co-existing, yet different than our own.
In fact, the isodual Euclidean space Ed(rd, δd, Rd) co-exists within, but it is
physically distinct from our own Euclidean space E(r, δ, R), and the same occurs
for the full representation spaces Sd(td, rd, vd) and S(t, r, v).

The next physical implication of the Newton-Santilli isodual equations is the
confirmation that antimatter moves backward in time in a way as causal as the
motion of matter forward in time (again, because negative time is measured with
a negative unit). In fact, the isodual time td is necessarily negative whenever t
is our ordinary time. Alternatively, we can say that the Newton-Santilli isodual
equations provide the only known causal description of particles moving backward
in time.

Yet another physical implication is that antimatter is characterized by negative
mass, negative energy and negative magnitudes of other physical quantities. As
we shall see, these properties have the important consequence of eliminating the
necessary use of Dirac’s “hole theory.”

The rest of this chapter is dedicated to showing that the above novel features
are necessary in order to achieve a consistent representation of antimatter at all
levels of study, from Newton to second quantization.

As we shall see, the physical implications are truly at the edge of imagination,
such as: the existence of antimatter in a new spacetime different from our own
constitutes the first known evidence of multi-dimensional character of our uni-
verse despite our sensory perception to the contrary; the achievement of a fully
equivalent treatment of matter and antimatter implies the necessary existence
of antigravity for antimatter in the field of matter (and vice-versa); the motion
backward in time implies the existence of a causal spacetime machine (although
restricted for technical reasons only to isoselfdual states); and other far reaching
advances.
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2.2.5 Isodual Lagrangian Mechanics
The second level of treatment of matter is that via the conventional classical

Lagrangian mechanics. It is, therefore, essential to identify the corresponding
formulation for antimatter, a task first studied in Ref. [4] (see also Ref. [9]).

A conventional (first-order) Lagrangian L(t, r, v) = 1
2×m×v

k×vk +V (t, r, v)
on configuration space (2.2.5) is mapped under isoduality into the isodual La-
grangian

Ld(td, rd, vd) = −L(−t, −r, −v), (2.2.12)

defined on isodual space (2.2.9).
In this way we reach the basic analytic equations of this chapter, today known

as Lagrange-Santilli isodual equations, first introduced in Ref. [4]

dd

ddtd
d
∂dLd(td, rd, vd)

∂dvkd
d− ∂dLd(td, rd, vd)

∂drkd
d = 0, (2.2.13)

All various aspects of the isodual Lagrangian mechanics can then be readily
derived.

It is easy to see that isodual equations (2.3.13) provide a direct analytic repre-
sentation (i.e., a representation without integrating factors or coordinate trans-
forms) of the isodual equations (2.2.11),

dd

ddtd
d
∂dLd(td, rd, vd)

∂dvkd
d− ∂dLd(td, rd, vd)

∂dxkd
d =

= md
k ×d ddvd

k/
dddtd − F d SA

k (t, r, v) = 0. (2.2.14)

The compatibility of the isodual Lagrangian mechanics with the primitive New-
tonian treatment then follows.

2.2.6 Isodual Hamiltonian Mechanics
The isodual Hamiltonian is evidently given by [4,9]

Hd = pd
k ×d pdk/d2d ×d md + V d(td, rd, vd) = −H. (2.2.15)

It can be derived from (nondegenerate) isodual Lagrangians via a simple isod-
uality of the Legendre transforms and it is defined on the 7N -dimensional isodual
phase space (isocotangent bundle)

Sd(td, rd, pd) = Ed(td, Rd
t )× Ed(rd, δd, Rd)× Ed(pd, δd, Rd). (2.2.16)

The isodual canonical action is given by [4,9]

A◦d =
∫ t2

t1

(pd
k ×d ddrkd −Hd ×d ddtd) =
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=
∫ t2

t1

[R◦d
µ (bd)×d ddbµd −Hd ×d ddtd], (2.2.17a)

R◦ = {p, 0}, b = {x, p}, µ = 1, 2, . . . , 6. (2.2.17b)

Conventional variational techniques under simple isoduality then yield the fun-
damental canonical equations of this chapter, today known as Hamilton-Santilli
isodual equations [4,24-31] that can be written in the disjoint r and p notation

ddxkd

ddtd
=
∂dHd(td, xd, pd)

∂dpd
k

,
ddpd

k

ddtd
= −∂

dHd(td, xd, pd)
∂dxdk

, (2.2.18)

or in the unified notation

ωd
µν ×d d

dbdν

ddtd
=

∂dHd(td, bd)
∂dbdµ

, (2.2.19)

where ωd
µν is the isodual canonical symplectic tensor

(ωd
µν) = (∂dR◦d

ν /
d∂dbdµ − ∂dR◦d

µ /
d∂dbdν) =

(
0 I
−I 0

)
= (ωµν). (2.2.20)

Note that isoduality maps the canonical symplectic tensor into the canonical
Lie tensor, with intriguing geometric and algebraic implications.

The Hamilton-Jacobi-Santilli isodual equations are then given by [4,9]

∂dA◦d/d∂dtd +Hd = 0, (2.2.21a)

∂dA◦d/d∂dxd
k − pd

k = 0, ∂dA◦d/d∂dpd
k ≡ 0. (2.2.21b)

The Lie-Santilli isodual brackets among two isodual functions Ad and Bd on
Sd(td, xd, pd) then become

[Ad,dBd] =
∂dAd

∂dbdµ
d ×d ωdµν ×d ∂

dBd

∂dbdν
d = −[A,B], (2.2.22)

where
ωdµν = (ωµν) (2.2.23)

is the Lie-Santilli isodual tensor (that coincides with the conventional canonical
tensor). The direct representation of isodual equations in first-order form is self-
evident.

In summary, all properties of the isodual theory at the Newtonian level carry
over at the level of isodual Hamiltonian mechanics.
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2.2.7 Isodual Galilean Relativity
As it is well known, the Newtonian, Lagrangian and Hamiltonian treatment

of matter are only the pre-requisites for the characterization of physical laws via
basic relativities and their underlying symmetries. Therefore, no equivalence in
the treatment of matter and antimatter can be achieved without identifying the
relativities suitable for the classical treatment of antimatter.

To begin this study, we introduce the Galilei-Santilli isodual symmetry Gd(3.1)
[7,5,9,22-31] as the step-by-step isodual image of the conventional Galilei sym-
metry G(3.1) (herein assumed to be known2). By using conventional symbols for
the Galilean symmetry of a Keplerian system of N point particles with non-null
masses ma, a = 1, 2, . . . , n, Gd(3.1) is characterized by isodual parameters and
generators

wd = (θd
k, r

kd
o , vkd

o , tdo) = −w, (2.2.24a)

Jd
k =

∑
aijkr

d
ja ×d pk

ja = −Jk (2.2.24b)

P d
k =

∑
ap

d
ka = −Pk, (2.2.24c)

Gd
k =

∑
a(md

a ×d rd
ak − td × pd

ak), (2.2.24d)

Hd =
1
2

d

×d
∑

ap
d
ak ×d pkd

a + V d(rd) = −H, (2.2.24e)

equipped with the isodual commutator

[Ad,dBd] =
∑

a,k[(∂dAd/d∂drkd
a )×d (∂dBd/d∂dpd

ak)−

−(∂dBd/d∂drkd
a )×d (∂dAd/d∂dpd

ak)]. (2.2.25)

In accordance with rule (2.1.34), the structure constants and Casimir invariants
of the isodual algebra Gd(3.1) are negative-definite. If g(w) is an element of the
(connected component) of the Galilei group G(3.1), its isodual is characterized
by

gd(wd) = ed
−id×dwd×dXd

= −ei×(−w)×X = −g(−w) ∈ Gd(3.1). (2.2.26)

The Galilei-Santilli isodual transformations are then given by

td → t′d = td + tdo = −t′, (2.2.27a)

rd → r′d = rd + rd
o = −r′ (2.2.27b)

2The literature on the conventional Galilei and special relativities and related symmetries is so vast as
to discourage discriminatory quotations.
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rd → r′d = rd + vd
o ×d tdo = −r′, (2.2.27c)

rd → r′d = Rd(θd)×d rd = −R(−θ)× r. (2.2.27d)

where Rd(θd) is an element of the isodual rotational symmetry first studied in the
original proposal [1].

The desired classical nonrelativistic characterization of antimatter is therefore
given by imposing the Gd(3.1) invariance to the considered isodual equations.
This implies, in particular, that the equations admit a representation via isodual
Lagrangian and Hamiltonian mechanics.

We now confirm the classical experimental verification of the above isodual
representation of antimatter already treated in Section 2.2.2. Consider a con-
ventional, classical, massive particle and its antiparticle in exterior dynamical
conditions in vacuum. Suppose that the particle and antiparticle have charge −e
and +e, respectively (say, an electron and a positron), and that they enter into
the gap of a magnet with constant magnetic field B.

As it is well known, visual experimental observation establishes that particles
and antiparticles under the same magnetic field have spiral trajectories of opposite
orientation. But this behavior occurs for the representation of both the particle
and its antiparticle in the same Euclidean space. The situation under isoduality
is different, as described by the following:

LEMMA 2.2.1 [5a]: The trajectories under the same magnetic field of a charged
particle in Euclidean space and of the corresponding antiparticle in isodual Eu-
clidean space coincide.

Proof: Suppose that the particle has negative charge −e in Euclidean space
E(r, δ, R), i.e., the value −e is defined with respect to the positive unit +1 of
the underlying field of real numbers R = R(n, +, ×). Suppose that the particle
is under the influence of the magnetic field B.

The characterization of the corresponding antiparticle via isoduality implies the
reversal of the sign of all physical quantities, thus yielding the charge (−e)d =
+e in the isodual Euclidean space Ed(rd, δd, Rd), as well as the reversal of the
magnetic field Bd = −B, although now defined with respect to the negative unit
(+1)d = −1.

It is then evident that the trajectory of a particle with charge −e in the field B
defined with respect to the unit +1 in Euclidean space and that for the antiparticle
of charge +e in the field −B defined with respect to the unit −1 in isodual
Euclidean space coincide (Figure 2.3). q.e.d.

An aspect of Lemma 2.2.1, which is particularly important for this monograph,
is given by the following:
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Figure 2.3. A schematic view of the trajectories of an electron and a positron with the same
kinetic energy under the same magnetic field. The trajectories “appear” to be the reverse of
each other when inspected by one observer, such as that in our spacetime (top and central
views). However, when the two trajectories are represented in their corresponding spacetimes
they coincide, as shown in the text (top and bottom views).

COROLLARY 2.2.1A: Antiparticles reverse their trajectories when projected
from their own isodual space into our own space.

Lemma 2.2.1 assures that isodualities permit the representation of the correct
trajectories of antiparticles as physically observed, despite their negative energy,
thus providing the foundations for a consistent representation of antiparticles at
the level of first quantization studied in the next section. Moreover, Lemma 2.2.1
tells us that the trajectories of antiparticles appear to exist in our space while in
reality they belong to an independent space.

2.2.8 Isodual Special Relativity
We now introduce isodual special relativity for the classical relativistic treat-

ment of point-like antiparticles (for the conventional case see Ref. [32]).
As it is well known, conventional special relativity is constructed on the fun-

damental 4-dimensional unit of the Minkowski space I = Diag.(1, 1, 1, 1),
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representing the dimensionless units of space, e.g., (+1 cm,+1 cm, +1 cm), and
the dimensionless unit of time, e.g., +1 sec, and constituting the basic unit of the
conventional Poincarè symmetry P (3.1) (hereon assumed to be known).

It then follows that isodual special relativity is characterized by the map

I = Diag.({1, 1, 1}, 1) > 0 →

rightarrowId = Diag.({−1, −1, −1}, −1) < 0. (2.2.28)

namely, the antimatter relativity is based on negative units of space and time, e.g.,
Id = Diag.(−1 cm,−1 cm,−1 cm,−1 sec). This implies the reconstruction of the
entire mathematics of the special relativity with respect to the common, isodual
unit Id, including: the isodual field Rd = Rd(nd, +d, ×d) of isodual numbers nd =
n× Id; the isodual Minkowski spacetime Md(xd, ηd, Rd) with isodual coordinates
xd = x× Id, isodual metric ηd = −η and basic invariant over Rd

(x− y)d2d
= [(xµ − yµ)× ηd

µν × (xν − yν)]× Id ∈ Rd. (2.2.29)

This procedure yields the central symmetry of this chapter indicated in Section
2.2.6, today known as the Poincaré-Santilli isodual symmetry [7]

P d(3.1) = Ld(3.1)×d T d(3.1), (2.2.30)

where Ld(3.1) is the Lorentz-Santilli isodual symmetry, ×d is the isodual direct
product and T d(3.1) represents the isodual translations.

The algebra of the connected component P ↑d
+ (3.1) of P d(3.1) can be con-

structed in terms of the isodual parameters wd = {−wk} = {−θ,−v,−a} and
isodual generators Xd = −X = {−Xk} = {−Mµν ,−Pµ}. The isodual commuta-
tor rules are given by [7]

[Md
µν ,

dMαβ ]d =

= id ×d (ηd
να ×d Md

µβ − ηd
µα ×d Md

νβ − ηd
νβ ×d Md

µα + ηd
µβ ×d M̂d

αν), (2.2.31a)

[Md
µν ,

d pd
α] = id ×d (ηd

µα ×d pd
ν − ηd

να ×d pd
µ), (2.2.31b)

[pd
α, p

d
β]d = 0. (2.3.31c)

The Poincarè-Santilli isodual transformations are given by3

x1d′ = x1d = −x1, (2.2.32a)

x2d′ = x2d = −x2, (2.2.32b)

3It should be indicated that, contrary to popular beliefs, the conventional Poincaré symmetry will be
shown in Chapter 3 to be eleven dimensional, the 11-th dimension being given by a new invariant under
change of the unit. Therefore, the isodual symmetry P d(3.1) is also 11-dimensional.
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Figure 2.4. A schematic view of the “isodual backward light cone” as seen by an observer in
our own spacetime with a time evolution reversed with respect to the “conventional forward
light cone.”

x3d′ = γd ×d (x3d − βd ×d x4d) = −x3′, (2.2.32c)

x4d′ = γd ×d (x4d − βd ×d x3d) = −x4′, (2.2.32d)

xdµ′ = xdµ + adµ = −xµ′, (2.3.32e)

where

βd = vd/dcd◦ = −β, βd2d = −β2, γd = −(1− β2)−1/2, (2.2.33)

and the use of the isodual operations (quotient, square roots, etc.) is assumed.
The isodual spinorial covering

Pd(3.1) = SLd(2.Cd)×d T d(3.1) (2.2.34)

can then be constructed via the same methods.
The basic postulates of the isodual special relativity are also a simple isodual

image of the conventional postulates [7]. For instance, the maximal isodual causal
speed in vacuum is the speed of light in Md, i.e.,

V d
max = cd◦ = −c◦, (2.2.35)

with the understanding that it is measured with a negative-definite unit, thus
being fully equivalent to the conventional maximal speed co referred to a positive
unit. A similar situation occurs for all other postulates.

The isodual light cone is evidently given by (Figure 2.4)

xd 2 d
= (xµd ×d ηd

µν ×d xνd)× Id =
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Figure 2.5. A schematic view of the “isodual cube,” here defined as a conventional cube with
two observers, an external observer in our spacetime and an internal observer in the isodual
spacetime. The first implication of the isodual theory is that the same cube coexists in the two
spacetimes and can, therefore, be detected by both observers. A most intriguing implication
of the isodual theory is that each observer sees the other becoming younger. This occurrence
is evident for the behavior of the internal observer with respect to the exterior one, since the
former evolves according to a time opposite that of the latter. The same occurrence is less
obvious for the opposite case, the behavior of the external observer with respect to the internal
one, and it is due to the fact that the projection of our positive time into the isodual spacetime
is indeed a motion backward in that spacetime.

= (−x× x− y × y − z × z + t× c2◦ × t)× (−I) = 0. (2.2.36)

As one can see, the above cone formally coincides with the conventional light
cone, although the two cones belong to different spacetimes. The isodual light
cone is used in these studies as the cone of light emitted by antimatter in empty
space (exterior problem).

Note that the two Minkowskian metrics η = Diag.(+1,+1,+1,−1) and η =
Diag.(−1,−1,−1,+1) have been popular since Minkowski’s times, although both
referred to the same unit I. We have learned here that these two popular metrics
are connected by isoduality.

We finally introduce the isodual electromagnetic waves and related isodual
Maxwell’s equations [9]

F d
µν = ∂dAd

µ/
d∂dxνd − ∂dAd

ν/
d∂dxdµ, (2.2.37a)

∂d
λF

d
µν + ∂d

µF
d
νλ + ∂d

νF
d
λµ = 0, (2.2.37b)

∂d
µF

dµν = −Jdν . (2.2.37c)

As we shall see, the nontriviality of the isodual special relativity is illustrated
by the fact that isodual electromagnetic waves experience gravitational repulsion
when in the field of matter.
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2.2.9 Inequivalence of Isodual and Spacetime Inversions
As it is well known (see, the fundamental spacetime symmetries of the 20-th

century are the continuous (connected) component of the Poincaré symmetry
plus discrete symmetries characterized by space reversal (also called parity) and
time reversal.

As noted earlier, antiparticles are assumed in the above setting to exist in
the same representation spacetime and to obey the same symmetries as those
of particles. On the contrary, according to the isodual theory, antiparticles are
represented in a spacetime and possess symmetries distinct from those of particles,
although connected to the latter by the isodual transform.

The latter occurrence requires the introduction of the isodual spacetime inver-
sions, that is, the isodual images of space and time inversions, first identified in
Ref. [9], that can be formulated in unified coordinate form as follows

xdµ′ = πd ×d xd = −π × x =

= (−r, x4), τd ×d xd = −τ × x = −(r,−x4), (2.2.38)

with field theoretical extension (here expressed for simplicity for a scalar field)

πd ×d φd(xd)×d πd† = φd(x′d, x′d = (−rd, td) = (r,−t), (2.2.39a)

τd ×d φd(xd)×d τd† = φ̄d(x
′′d, x′′d = (rd,−td) = (−r, t), (2.2.39b)

where rd(= −r) is the isodual coordinate on space Ed(rd, δd, Rd), and td is the
isodual time on Ed(td, 1, Rd

t ).

LEMMA 2.2.2 [9]: Isodual inversions and spacetime inversions are inequiva-
lent.

Proof. Spacetime inversions are characterized by the change of sign x→ −x by
always preserving the original metric measured with positive units, while isodual
inversions imply the map x→ xd = −x but now measured with an isodual metric
ηd = −η with negative units Id = −I, thus being inequivalent. q.e.d.

Despite their simplicity, isodual inversions (or isodual discrete symmetries) are
not trivial (Figure 2.6). In fact, all measurements are done in our spacetime, thus
implying the need to consider the projection of the isodual discrete symmetries
into our spacetime which are manifestly different than the conventional forms.

In particular, they imply a sort of interchange, in the sense that the conven-
tional space inversion (r, t) → (−r, t) emerges as belonging to the projection in
our spacetime of the isodual time inversion, and vice-versa.

Note that the above “interchange” of parity and time reversal of isodual parti-
cles projected in our spacetime could be used for experimental verifications, but
this aspect is left to interested readers.
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Figure 2.6. A schematic view of the additional peculiar property that the projection in our
spacetime of the isodual space inversion appears as a time inversion and vice versa. In fact, a
point in the isodual spacetime is given by (xd, td) = (−x,−t). The projection in our spacetime
of the isodual space inversion (xd, td) → (−xd, td) is then given by (x,−t), thus appearing
as a time (rather than a space) inversion. Similarly, the projection in our spacetime of the
isodual time inversion (xd, td) → (xd,−td) appears as (−x, t), that is, as a space (rather than
time) inversion. Despite its simplicity, the above occurrence has rather deep implications for all
discrete symmetries in particle physics indicated later on.

In closing this subsection, we point out that the notion of isodual parity has
intriguing connections with the parity of antiparticles in the (j, 0) + (0, j) repre-
sentation space more recently studied by Ahluwalia, Johnson and Goldman [10].
In fact, the latter parity results in being opposite that of particles which is fully
in line with isodual space inversion (isodual parity).

2.2.10 Dunning-Davies Isodual Thermodynamics of
Antimatter

An important contribution to the isodual theory has been made by J. Dunning-
Davies [11] who introduced in 1999 the first, and only known consistent thermo-
dynamics for antimatter, here called Dunning-Davies antimatter thermodynamics
with intriguing results and implications.

As conventionally done in the field, let us represent heat with Q, internal
energy with U , work with W , entropy with S, and absolute temperature with T .
Dunning-Davies isodual thermodynamics of antimatter is evidently defined via
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the isodual quantities

Qd = −Q, Ud = −U, W d = −W, Sd = −S, T d = −T (2.2.40)

on isodual spaces over the isodual field of real numbers Rd = Rd(nd, +d, ×d)
with isodual unit Id = −1.

Recall from Section 2.1.3 that differentials are isoselfdual (that is, invariant
under isoduality). Dunning-Davies then has the following:

THEOREM 2.2.1 [21]: Thermodynamical laws are isoselfdual.

Proof. For the First Law of thermodynamics we have

dQ = dU − dW ≡ ddQd = ddUd − ddW d. (2.2.41)

Similarly, for the Second Law of thermodynamics we have

dQ = T × dS ≡ ddQd = T d ×d Sd, (2.2.42)

and the same occurs for the remaining laws. q.e.d.
Despite their simplicity, Dunning-Davies results [21] have rather deep impli-

cations. First, the identity of thermodynamical laws, by no means, implies the
identity of the thermodynamics of matter and antimatter. In fact, in Dunning-
Davies isodual thermodynamics the entropy must always decrease in time, since
the isodual entropy is always negative and is defined in a space with evolution
backward in time with respect to us. However, these features are fully equivalent
to the conventional increase of the entropy tacitly referred to positive units.

Also, Dunning-Davies results indicate that antimatter galaxies and quasars
cannot be distinguished from matter galaxies and quasars via the use of thermo-
dynamics, evidently because their laws coincide, in a way much similar to the
identity of the trajectories of particles and antiparticles of Lemma 2.2.1.

This result indicates that the only possibility known at this writing to deter-
mine whether far-away galaxies and quasars are made up of matter or of anti-
matter is that via the predicted gravitational repulsion of the light emitted by
antimatter called isodual light (see next section and Chapter 5).

2.2.11 Isodual General Relativity
For completeness, we now introduce the isodual general relativity for the clas-

sical gravitational representation of antimatter. A primary motivation for its
study is the incompatibility with antimatter of the positive-definite character of
the energy-momentum tensor of the conventional general relativity studied in
Chapter 1.
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The resolution of this incompatibility evidently requires a structural revision of
general relativity [33] for a consistent treatment of antimatter. The only solution
known to the author is that offered by isoduality.4

It should be stressed that this study is here presented merely for complete-
ness, since the achievement of a consistent treatment of negative-energies, by no
means, resolves the serious inconsistencies of gravitation on a Riemannian space
caused by curvature, as studied in Section 1.2, thus requiring new geometric vistas
beyond those permitted by the Riemannian geometry (see Chapters 3 and 4).

As studied in Section 2.1.7, the isodual Riemannian geometry is defined on the
isodual field Rd(nd,+d,×d) for which the norm is negative-definite, Eq. (2.1.18).
As a result, all quantities that are positive in Riemannian geometry become neg-
ative under isoduality, thus including the energy-momentum tensor.

In fact, the energy-momentum tensor of isodual electromagnetic waves (2.2.37)
is negative-definite [8,9]

T d
µν = (4× π)−1d ×d (F d

µα ×d F d
αν

+ (1/4)−1d ×d gd
µν ×d F d

αβ ×d F dαβ). (2.2.43)

The Einstein-Hilbert isodual equations for antimatter in the exterior conditions
in vacuum are then given by [6,9]

Gd
µν = Rd

µν −
1
2

d

×d gd
µν ×d Rd = kd ×d T d

µν . (2.2.44)

The rest of the theory is then given by the use of the isodual Riemannian geometry
of Section 2.1.7.

The explicit study of this gravitational theory of antimatter is left to the in-
terested reader due to the indicated inconsistencies of gravitational theories on
a Riemannian space for the conventional case of matter (Section 1.2). These
inconsistencies multiply when treating antimatter, as we shall see.

2.3 OPERATOR ISODUAL THEORY OF
POINT-LIKE ANTIPARTICLES

2.3.1 Basic Assumptions
In this section we study the operator image of the classical isodual theory of

the preceding section; we prove that the operator image of isoduality is equivalent
to charge conjugation; and we show that isodual mathematics resolves all known
objections against negative energies.

A main result of this section is the identification of a simple, structurally new
formulation of quantum mechanics known as isodual quantum mechanics or, more

4The author would be grateful to colleagues who care to bring to his attention other “classical” gravi-
tational theories of antimatter compatible with the negative-energy solutions needed by antimatter.
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properly, as the isodual branch of hadronic mechanics first proposed by Santilli in
Refs. [5]. Another result of this section is the fact that all numerical predictions
of operator isoduality coincide with those obtained via charge conjugation on a
Hilbert space, thus providing the experimental verification of the isodual theory
of antimatter at the operator level.

Despite that, the isodual image of quantum mechanics is not trivial because
of a number of far reaching predictions we shall study in this section and in the
next chapters, such as: the prediction that antimatter emits a new light distinct
from that of matter; antiparticles in the gravitational field of matter experience
antigravity; bound states of particles and their antiparticles can move backward
in time without violating the principle of causality; and other predictions.

Other important results of this section are a new interpretation of the con-
ventional Dirac equation that escaped detection for about one century, as well
as the indication that the isodual theory of antimatter originated from the Dirac
equation itself, not so much from the negative-energy solutions, but more prop-
erly from their two-dimensional unit that is indeed negative-definite, I2×2 =
Diag.(−1,−1).

As we shall see, Dirac’s “hole theory”, with the consequential restriction of
the study of antimatter to the sole second quantization and resulting scientific
imbalance indicated in Section 1.1, were due to Dirac’s lack of knowledge of a
mathematics based on negative units.

Intriguingly, had Dirac identified the quantity I2×2 = Diag.(−1,−1) as the
unit of the mathematics treating the negative energy solutions of his equation, the
physics of the 20-th century would have followed a different path because, despite
its simplicity, the unit is indeed the most fundamental notion of all mathematical
and physical theories.

2.3.2 Isodual Quantization
The isodual Hamiltonian mechanics (and its underlying isodual symplectic ge-

ometry [5a] not treated in this chapter for brevity) permit the identification of a
new quantization channel, known as the naive isodual quantization [6] that can be
readily formulated via the use of the Hamilton-Jacobi-Santilli isodual equations
(2.2.21) as follows

A◦d → −id ×d ~d ×d Lndψd(td, rd), (2.3.1a)

∂dA◦d/d∂dtd +Hd = 0 → id ×d ∂dψd/d∂dtd =

= Hd ×d ψd = Ed ×d ψd, (2.3.1b)

∂dA◦d/d∂dxdk − p̂k = 0 → pd
k ×d ψd = −id ×d ∂d

kψ
d, (2.3.1c)

∂dA◦d/d∂dpd
k = 0 → ∂dψd/d∂dpd

k = 0. (2.3.1d)
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Recall that the fundamental unit of quantum mechanics is Planck’s constant
~ = +1. It then follows that the fundamental unit of the isodual operator theory
is the new quantity

~d = −1. (2.3.2)

It is evident that the above quantization channel identifies the new mechanics
known as isodual quantum mechanics, or the isodual branch of hadronic mechan-
ics.

2.3.3 Isodual Hilbert Spaces
Isodual quantum mechanics can be constructed via the anti-unitary transform

U × U † = ~d = Id = −1, (2.3.3)

applied, for consistency, to the totality of the mathematical and physical formula-
tions of quantum mechanics. We recover in this way the isodual real and complex
numbers

n→ nd = U × n× U † = n× (U × U †) = n× Id, (2.3.4)

isodual operators
A→ U ×A× U † = Ad, (2.3.5)

the isodual product among generic quantities A, B (numbers, operators, etc.)

A×B → U × (A×B)× U † =

= (U ×A× U †)× (U × U †)−1 × (U ×B × U †) = Ad ×d Bd, (2.3.6)

and similar properties.
Evidently, isodual quantum mechanics is formulated in the isodual Hilbert space

Hd with isodual states [6]

|ψ >d= −|ψ >†= − < ψ|, (2.3.7)

where < ψ| is a conventional dual state on H, and isodual inner product

< ψ|d × (−1)× |ψ >d ×Id, (2.3.8)

with isodual expectation values of an operator Ad

< Ad >d= (< ψ|d ×d Ad ×d |ψ >d /d < ψ|d ×d |ψ >d), (2.3.9)

and isodual normalization

< ψ|d ×d |ψ >d= −1 (2.3.10)

defined on the isodual complex field Cd with unit −1 (Section 2.1.1).
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The isodual expectation values can also be reached via anti-unitary transform
(2.3.3),

< ψ| ×A× |ψ >→ U × (< ψ| ×A× |ψ >)× U † =

= (< ψ| × U †)× (U × U †)−1 × (U ×A× U †)× (U × U †)−1×
×(U × |ψ >)× (U × U †) =< ψ|d ×d Ad ×d |ψ >d ×Id. (2.3.11)

The proof of the following property is trivial.

LEMMA 2.3.1 [5b]: The isodual image of an operator A that is Hermitian on
H over C is also Hermitian on Hd over Cd (isodual Hermiticity).

It then follows that all quantities that are observables for particles are equally
observables for antiparticles represented via isoduality.

LEMMA 2.3.2 [5b]: Let H be a Hermitian operator on a Hilbert space H over
C with positive-definite eigenvalues E,

H × |ψ >= E × |ψ >,H = H†, E => 0. (2.3.12)

Then, the eigenvalues of the isodual operator Hd on the isodual Hilbert space Hd

over Cd are negative-definite,

Hd ×d |ψ >d= Ed ×d |ψ >d,Hd = Hd†d, Ed < 0. (2.3.13)

This important property establishes an evident compatibility between the clas-
sical and operator formulations of isoduality.

We also mention the isodual unitary laws

Ud ×d Ud† = Ud† ×d Ud = Id, (2.3.14)

the isodual trace
TrdAd = (TrAd)× Id ∈ Cd, (2.3.15a)

Trd(Ad ×d Bd) = TrdAd ×d TrdBd, (2.3.15b)

the isodual determinant

DetdAd = (DetAd)× Id ∈ Cd, (2.3.16a)

Detd(Ad ×d Bd) = Detd ×d DetdBd, (2.3.16b)

the isodual logarithm of a real number n

Logdnd = −(Log nd)× Id, (2.3.17)

and other isodual operations.
The interested reader can then work out the remaining properties of the isodual

theory of linear operators on a Hilbert space.
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2.3.4 Isoselfduality of Minkowski’s Line Elements and
Hilbert’s Inner Products

A most fundamental new property of the isodual theory, with implications as
vast as the formulation of a basically new cosmology, is expressed by the following
lemma whose proof is a trivial application of transform (2.3.3).

LEMMA 2.3.3 [23]: Minkowski’s line elements and Hilbert’s inner products are
invariant under isoduality (or they are isoselfdual according to Definition 2.1.2),

x2 = (xµ × ηµν × xν)× I ≡

≡ (xdµ ×d ηd
µν ×d xdν)× Id = xd2d

, (2.3.18a)

< ψ| × |ψ > × I ≡ < ψ|d ×d |ψ >d × Id. (2.3.18b)

As a result, all relativistic and quantum mechanical laws holding for matter
also hold for antimatter under isoduality. The equivalence of charge conjugation
and isoduality then follows, as we shall see shortly.

Lemma 2.3.3 illustrates the reason why isodual special relativity and isodual
Hilbert spaces have escaped detection for about one century. Note, however,
that invariances (2.3.18) require the prior discovery of new numbers, those with
negative unit.

2.3.5 Isodual Schrödinger and Heisenberg’s Equations
The fundamental dynamical equations of isodual quantum mechanics are the

isodual images of conventional dynamical equations. They are today known as
the Schrödinger-Santilli isodual equations [4] (where we assume hereon ~d = −1,
thus having ×d~d = 1)

id ×d ∂|ψ >d /d∂dtd = Hd ×d |ψ >d, (2.3.19a)

pd
k ×d |ψ >d= −id ×d ∂d|ψ >d /d∂drd, (2.3.19b)

and the Heisenberg-Santilli isodual equations

id ×d ddAd/dddtd = Ad ×d Hd −Hd ×d Ad = [Ad,Hd]d, (2.3.20a)

[rd
i , p

d
j ]

d = id ×d δdi
j , [r

d, rdj ]d = [pd
i , p

d
j ]

d = 0. (2.3.20b)

Note that, when written explicitly, Eq. (2.3.19a) is based on an associative
modular action to the left,

− < ψ| ×d Hd = (∂d < ψ|∂dtd)×d id. (2.3.21)

It is an instructive exercise for readers interested in learning the new mechanics
to prove the equivalence of the isodual Schrödinger and Heisenberg equations via
the anti-unitary transform (2.3.3).
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2.3.6 Isoselfdual Re-Interpretation of Dirac’s Equation
Isoduality has permitted a novel interpretation of the conventional Dirac equa-

tion (we shall here used the notation of Ref. [12]) in which the negative-energy
states are reinterpreted as belonging to the isodual images of positive energy
states, resulting in the first known consistent representation of antiparticles in
first quantization.

This result should be expected since the isodual theory of antimatter applies
at the Newtonian level, let alone that of first quantization. Needless to say,
the treatment via isodual first quantization does not exclude that via isodual
second quantization. The point is that the treatment of antiparticles is no longer
restricted to second quantization, as a condition to resolve the scientific imbalance
between matter and antimatter indicated earlier.

Consider the conventional Dirac equation [2]

[γµ × (pµ − e×Aµ/c) + i×m]×Ψ(x) = 0, (2.3.22)

with realization of Dirac’s celebrated gamma matrices

γk =
(

0 −σk

σk 0

)
, γ4 = i×

(
I2×2 0,

0 −I2×2

)
, (2.3.23a)

{γµ, γ̃ν} = 2×ηµν , Ψ = i×
(

Φ
−Φ†

)
. (2.3.23b)

At the level of first quantization here considered, the above equation is rather
universally interpreted as representing an electron under an external electromag-
netic field.

The above equations are generally defined in the 6-dimensional space given by
the Kronecker product of the conventional Minkowski spacetime and an internal
spin space

MTot = M(x, η,R)× Sspin, (2.3.24)

with total unit

ITot = Iorb × Ispin = Diag.(1, 1, 1, 1)×Diag.(1, 1), (2.3.25)

and total symmetry
P (3.1) = SL(2.C)× T (3.1). (2.3.26)

The proof of the following property is recommended to interested readers.
THEOREM 2.3.1 [5b]: Pauli’s sigma matrices and Dirac’s gamma matrices

are isoselfdual,
σk ≡ σd

k, (2.3.27a)

γµ ≡ γd
µ. (2.3.27b).
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The above properties imply an important re-interpretation of Eq. (2.3.22), first
identified in Ref. [9] and today known as the Dirac-Santilli isoselfdual equation,
that can be written

[γ̃µ × (pµ − e×Aµ/c) + i×m]× Ψ̃(x) = 0, (2.3.28)

with re-interpretation of the gamma matrices

γ̃k =
(

0 σd
k

σk 0

)
, γ̃4 = i

(
I2×2 0,

0 Id
2×2

)
, (2.3.29a)

{γ̃µ, γ̃ν} = 2d×dηd
µν , Ψ̃ = −γ̃4 ×Ψ = i×

(
Φ
Φd

)
, (2.3.29b)

By recalling that isodual spaces coexist with, but are different from conven-
tional spaces, we have the following:

THEOREM 2.3.2 [9]: The Dirac-Santilli isoselfdual equation is defined on the
12-dimensional isoselfdual representation space

MTot = {M(x, η,R)× Sspin} × {Md(xd, ηd, Rd)×d Sd
spin}, (2.3.30)

with isoselfdual total 12-dimensional unit

ITot = {Iorb × Ispin} × {Id
orb ×d Id

spin}, (2.3.31)

and its symmetry is given by the isoselfdual product of the Poincaré symmetry
and its isodual

STot = P(3.1)× Pd(3.1) =

= {SL(2.C)× T (3.1)} × {SLd(2.Cd)×d T d(3.1)}. (2.3.32)

A direct consequence of the isoselfdual structure can be expressed as follows.

COROLLARY 2.3.2a [9]: The Dirac-Santilli isoselfdual equation provides a
joint representation of an electron and its antiparticle (the positron) in first quan-
tization,

Dirac Equation = Electron× Positron. (2.3.33)

In fact, the two-dimensional component of the wave function with positive-
energy solution represents the electron and that with negative-energy solutions
represent the positron without any need for second quantization, due to the
physical behavior of negative energies in isodual treatment established earlier.

Note the complete democracy and equivalence in treatment of the electron and
the positron in equation (2.3.28), in the sense that the equation can be equally
used to represent an electron or its antiparticle. By comparison, according to the
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original Dirac interpretation, the equation could only be used to represent the
electron [12], since the representation of the positron required the “hole theory”.

It has been popularly believed throughout the 20-th century that Dirac’s
gamma matrices provide a “four-dimensional representation of the SU(2)-spin
symmetry”. This belief is disproved by the isodual theory, as expressed by the
following

THEOREM 2.3.3 [5b]: Dirac’s gamma matrices characterize the direct prod-
uct of an irreducible two-dimensional (regular) representation of the SU(2)-spin
symmetry and its isodual,

Dirac′s Spin Symmetry : SU(2)× SUd(2). (2.3.34)

In fact, the gamma matrices are characterized by the conventional, 2-dim-
ensional Pauli matrices σk and related identity I2×2 as well as other matrices
that have resulted in being the exact isodual images σd

k with isodual unit Id
2×2.

It should be recalled that the isodual theory was born precisely out of these
issues and, more particularly, from the incompatibility between the popular in-
terpretation of gamma matrices as providing a “four-dimensional” representation
of the SU(2)-spin symmetry and the lack of existence of such a representation in
Lie’s theory.

The sole possibility known to the author for the reconciliation of Lie’s theory
for the SU(2)-spin symmetry and Dirac’s gamma matrices was to assume that
−I2×2 is the unit of a dual-type representation. The entire theory studied in this
chapter then followed.

It should also be noted that, as conventionally written, Dirac’s equation is not
isoselfdual because it is not sufficiently symmetric in the two-dimensional states
and their isoduals.

In summary, Dirac’s was forced to formulate the “hole theory” for antiparti-
cles because he referred the negative energy states to the conventional positive
unit, while their reformulation with respect to negative units yields fully physical
results.

It is easy to see that the same isodual reinterpretation applies for Majorana’s
spinorial representations [13] (see also [14,15]) as well as Ahluwalia’s broader
spinorial representations (1/2, 0) + (0, 1/2) [16] (see also the subsequent paper
[17]), that are reinterpreted in the isoselfdual form (1, 2, 0) + (1, 2, 0)d, thus
extending their physical applicability to first quantization.

In the latter reinterpretation the representation (1/2, 0) is evidently done con-
ventional spaces over conventional fields with unit +1, while the isodual represen-
tation (1/2, 0)d is done on the corresponding isodual spaces defined on isodual
fields with unit −1. As a result, all quantities of the representation (1/2, 0)
change sign under isoduality.
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It should be finally indicated that Ahluwalia treatment of Majorana spinors
has a deep connection with isoduality because the underlying Class II spinors
have a negative norm [16] precisely as it is the case for isoduality. As a result, the
isodual reinterpretation under consideration here is quite natural and actually
warranted for mathematical consistency, e.g., to have the topology characterized
by a negative norm be compatible with the underlying fields.

2.3.7 Equivalence of Isoduality and charge conjugation
We come now to another fundamental point of this chapter, the proof that

isoduality is equivalent to charge conjugation. This property is crucial for the
experimental verification of isoduality at the particle level too. This equivalence
was first identified by Santilli in Ref. [6] and can be easily expressed today via
the following:

LEMMA 2.3.4 [6,5b,18]: The isodual transform is equivalent to charge conju-
gation.

Proof. Charge conjugation is characterized by the following transform of
wavefunctions (see, e.g., Ref. [12], pages 109 and 176)

Ψ(x) → CΨ(x) = c×Ψ†(x), (2.3.35)

where
|c| = 1, (2.3.36)

thus being manifestly equivalent to the isodual transform

Ψ(x) → Ψd(xd) = −Ψ†(−xt), (2.3.37)

where t denotes transpose.
A reason why the two transforms are equivalent, rather than identical, is the

fact that charge conjugation maps spacetime into itself, while isoduality maps
spacetime into its isodual. q.e.d.

Let us illustrate Lemma 2.3.4 with a few examples. As well known, the Klein-
Gordon equation for a free particle

∂µ∂µΨ−m2 ×Ψ = 0 (2.3.38)

is invariant under charge conjugation, in the sense that it is turned into the form

c× [Ψ̄∂µ∂µ − Ψ̄×m2] = 0, |c| = 1, (2.3.39)

where the upper bar denotes complex conjugation (since Ψ̄ is a scalar), while the
Lagrangian density

L = −(~× ~/2×m)× {∂µΨ̄− i× e×Aµ/~× c)× Ψ̄]×
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×[∂Ψ + (i× e×Aµ/~× c)×Ψ] +m×m× Ψ̄×Ψ (2.3.40)

is left invariant, and the four-current

Jµ = −(i× ~/2×m)× [ψ̄ × ∂µΨ− (∂µΨ̄)×Ψ] (2.3.41)

changes sign
Jµ → CJµ = −Jµ. (2.3.42)

By recalling the selfduality of ordinary derivatives, Eq. (2.1.30), under isodu-
ality the Klein-Gordon Equation becomes

[∂µ∂µΨ−m2 ×Ψ]d = Ψd∂dµ∂d
µ −Ψd ×d md ×d md =

= −[Ψ̄∂µ∂µ − Ψ̄×m2] = 0, (2.3.43)

thus being equivalent to Eq. (2.3.39), while the Lagrangian changes sign and the
four-current changes sign too,

Jd
µ = −(i× ~/2×m)× [Ψ̄× ∂µΨ− (∂µΨ̄)×Ψ]d =

= (i× ~/2×m)× [Ψ̄× ∂µΨ− (∂µΨ̄)×Ψ], (2.3.44)

(where we have used the isoselfduality of the imaginary number i).
The above results confirm Lemma 2.3.4 because of the equivalent behavior of

the equations of motion and the four-current, while the change of sign of the
Lagrangian does not affect the numerical results.

As it is also well known, the Klein-Gordon equation for a particle under an
external electromagnetic field [12]

[(∂µ + i× e×Aµ/~× c)×

×(∂µ + i× e×Aµ/~× c)−m2]×Ψ = 0, (2.3.45)

is equally invariant under charge conjugation in which either e or Aµ change sign,
in view of the known invariance

C(i× e×Aµ/~× c) = i× e×Aµ/~× c, (2.3.46)

while the four-current also changes sign. By noting that the preceding invariance
persists under isoduality,

(i× e×Aµ/~× c)d = i× e×Aµ/~× c, (2.3.47)

Eq. (2.3.45) remains invariant under isoduality, while the Lagrangian density
changes sign and the four-current, again, changes sign.

Similarly, consider Dirac equation (see also Ref. [12], pp. 176-177)

[γµ × (∂µΨ− (i× e×Aµ/~× c)×Ψ +m×Ψ = 0, (2.3.48)
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with Lagrangian density

L = (~× c/2)× {Ψ̃× γµ × [∂µΨ + (i× e×Aµ/~× c)×Ψ]−

−(∂µΨ̃− (i× e×Aµ/~× c)× Ψ̃]× γµ −m× Ψ̃×Ψ, (2.3.49a)

Ψ̃ = Ψ† × γ4, (2.3.49b)
and four-current

Jµ = i× c× Ψ̃× γµ ×Ψ = i× c×Ψ† × γ4 × γµ ×Ψ. (2.3.50)

The charge conjugation for Dirac’s equations is given by the transform [12]

Ψ → CΨ = c× S−1
C × Ψ̃t (2.3.51)

where SC is a unitary matrix such that

γµ → −γt
µ = SC × γµ × S−1

C , (2.3.52)

and there is the change of sign either of e or of Aµ, under which the equation is
transformed into the form

[∂µΨ̃− (i× e×Aµ/~× c)× Ψ̃]× γµ −m× Ψ̃ = 0, (2.3.53)

while the Lagrangian density changes sign and the four-current remains the same,

L→ CL = −L, Jµ → CJµ = Jµ. (2.3.54)

It is easy to see that isoduality provides equivalent results. In fact, we have
for Eq. (2.3.48)

{[γµ × (∂µΨ− i× e×Aµ/~× c)×Ψ +m×Ψ}d =

= [∂µΨ† − (i× e×Aµ/~× c)×Ψ†]× γµ −m×Ψ† = 0, (2.3.55)
that, when multiplied by γ4 reproduces Eq. (2.3.53) identically. Similarly, by
recalling that Dirac’ s gamma matrices are isoselfdual (Theorem 2.3.1), and by
noting that

Ψ̃d = (Ψ† × γ4)d = γ4 ×Ψ, (2.3.56)
we have

Ld = L, (2.3.57)
while for the four-current we have

Jd
µ = −i× c×Ψ† × γµ × γ4 × ψ. (2.3.58)

But the γµ and γ4 anticommutate. As a consequence, the four-current does not
change sign under isoduality as in the conventional case.

Note that the lack of change of sign under isoduality of Dirac’s four-current Jµ

confirms reinterpretation (2.3.28) since, for the latter equation, the total charge
is null.

The equivalence between isoduality and charge conjugation of other equations,
such as those by Weyl, Majorana, etc., follows the same lines.
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2.3.8 Experimental Verification of the Isodual Theory
of Antimatter in Particle Physics

In Section 2.2.3. we have established the experimental verification of the isod-
ual theory of antimatter in classical physics that, in particle physics, requires no
detailed elaboration since it is established by the equivalence of charge conjuga-
tion and isoduality (Lemma 2.3.4), and we can write:

LEMMA 2.3.5 [6,5b,18], [7]: All experimental data currently available for an-
tiparticles represented via charge conjugation are equally verified by the isodual
theory of antimatter.

2.3.9 Elementary Particles and their Isoduals
We assume the reader is familiar with the conventional definition of elementary

particles as irreducible unitary representations of the spinorial covering of the
Galilei symmetry G(3.1) for nonrelativistic treatments and those of the Poincaré
symmetry P (3.1) for relativistic treatments. We therefore introduce the following:

DEFINITION 2.3.1: Elementary isodual particles (antiparticles) are given
by irreducible unitary representations of the spinorial covering of the Galilei-
Santilli’s isodual symmetry Gd(3.1) for nonrelativistic treatments and those of
the Poincaré-Santilli isodual symmetry P d(3.1) for relativistic treatments.

A few comments are now in order. Firstly, one should be aware that “isodual
particles” and “antiparticles” do not represent the same notion, evidently because
of the negative mass, energy and time of the former compared to positive mass,
energy and time of the latter. In the rest of this chapter, unless otherwise stated,
the word “antiparticle” will be referred to as the “isodual particle.”

For instance the word “positron” e+ is more appropriately intended to repre-
sent the “isodual electron” with symbol e−d. Similarly the, “antiproton” p− is
intended to represent the “isodual proton” p+d.

Secondly, the reader should note the insistence on the elementary character
of the antiparticles here admitted. The reason is that the antigravity studied in
Chapter 4 is specifically formulated for “elementary” isodual particles, such as
the isodual electron, due to a number of unsettled aspects pertaining to composite
particles.

Consider, as an illustration, the case of mesons. If the π◦ is a bound state of a
particle and its isodual, the state is isoselfdual and, as such, it cannot experience
antigravity, as illustrated in the next section. A number of ambiguities then
follow for the study of the gravity of the charged mesons π±, such as the problem
of ascertaining which of the two mesons is a particle and which is its isodual or,
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whether the selected antiparticle is indeed the isodual image of the particle as a
necessary condition for meaningful study of their gravity.

Note that essentially the same ambiguities prohibit the use of muons for a
serious theoretical and experimental studies of the gravity of antiparticles, again,
because of unsettled problems pertaining to the structure of the muons them-
selves. Since the muons are naturally unstable, they cannot be credibly believed
to be elementary. Therefore, serious theoretical and experimental studies on the
gravity of muons require the prior identification of their constituents with physical
particles.

Finally, the reader should be aware that Definition 2.3.1 excludes the use of
quark conjectures for the gravitational studies of this monograph. This is due
to the well-known basic inconsistency of quark conjecture of not admitting any
gravitation at all (see, e.g., the Appendix of Ref. [18]). In fact, gravity can only be
defined in our spacetime while quarks can only be defined in their mathematical
unitary internal space with no known connection with our spacetime due to the
O’Rafearthaigh theorem.5

Also, the only “masses” that can be credibly claimed as possessing inertia are
the eigenvalues of the second-order Casimir invariant of the Poincaré symmetry
pµ×pµ = m2. Quarks cannot be characterized via such a fundamental symmetry,
as well known. It then follows that “quark masses” are mere mathematical pa-
rameters defined in the mathematical internal complex-unitary space that cannot
possibly be used as serious basis for gravitational tests.

2.3.10 Photons and their Isoduals
As it is well known, photons have no charge and, therefore, they are invariant

under charge conjugation, as transparent from the simple plane-wave representa-
tion

Ψ(t, r) = N × ei×(k×r−E×t), N ∈ R, (2.3.59)

with familiar relativistic form

Ψ(x) = N × ei×kµ×xµ
, (2.3.60)

and familiar expression for the energy

E = h× ν. (2.3.61)

As a result, matter and antimatter have been believed throughout the 20-th
century to emit the same light. In turn, this belief has left fundamentally unset-
tled basic questions in astrophysics and cosmology, such as the lack of quantitative

5The possible connection between internal and spacetime symmetries offered by supersymmetric theories
cannot be credibly used for gravitational tests due to their highly unsettled character and the prediction
of a zoo of new particles none of which has been experimentally detected to the author’s best knowledge.
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studies as to whether far-away galaxies and quasars are made up of matter or of
antimatter.

One of the most intriguing and far reaching implications of the isodual theory is
that, while remaining evidently invariant under charge conjugation, the photon is
not invariant under isoduality, thus admitting a conjugate particle first submitted
by Santilli in Ref. [18] under the name of isodual photon. In particular, the isodual
photon emerges as having physical characteristics that can be experimentally
measured as being different from those of the photon.

Therefore, the isodual theory offers the first known possibilities of quantitative
theoretical and experimental studies as to whether a far-away galaxy or quasar
is made of matter or of antimatter due to detectable physical differences of their
emitted light.

Note that the term “antiphoton” could be misleading because the prefix “anti”
is generally assumed as referring to charge conjugation. For this reason the name
of “isodual photon” appears to be preferable, also because it represents, more
technically, the intended state.

In fact, the photon is mapped by isoduality into a new particle possessing
all negative-definite physical characteristics, with the following simple isodual
plane-wave representation

Ψd(td, rd) = Nd ×d e
id×d(kd×drd−Ed×dtd)
d , Nd ∈ Rd, (2.3.62)

with relativistic expression on isodual Minkowski space

Ψd(xd) = Nd ×d e
id×dkd

µ×dxdµ

d , (2.3.63)

and isodual expression for the energy

Ed = hd ×d νd, (2.3.64)

where ed is the isodual exponentiation (2.1.26b).
Note that, since i is isoselfdual, Eq. (2.1.20), the exponent of the plane-wave

representation is invariant under both charge conjugation and isoduality, as illus-
trated by the following expression

id ×d (kd ×d rd − Ed ×d td) ≡ i× (k × r − E × t), (2.3.65)

or its relativistic counterpart

id ×d kd
µ ×d xdµ ≡ i× kµ × xµ, (2.3.66)

thus confirming the lack of contradiction between charge conjugation and isodu-
ality.
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Moreover, both the photon and the isodual photon travel in vacuum with the
same (absolute) speed |c|, for which we have the additional identity

kd
µ ×d kdµ ≡ kµ × kµ = 0. (2.3.67)

Despite the above identities, energy and time are positive-definite for the pho-
ton, while they are negative-definite for the isodual photon. As we shall see, the
latter property implies that photons are attracted by the gravitational field of
matter while isodual photons are repelled, thus providing a physically detectable
difference.

Additional differences between light emitted by matter and that emitted by
antimatter, such as those pertaining to parity and other discrete symmetries,
require additional study.

All in all, the isodual theory of antimatter permits the first possibilities known
to the author for future experimental measurements as to whether far-away galax-
ies and quasars are made up of matter or of antimatter.

2.3.11 Electrons and their Isoduals
The next truly elementary particles and antiparticles are the electron e− and its

antiparticle, the positron e+ or the isodual electron e−d. The differences between
the “positron” and the “isodual electron” should be kept in mind. In fact, the
former has positive rest energy and moves forward in time, while the latter has
negative rest energy and moves backward in time.

Also, the electron is known to experience gravitational attraction in the field of
matter, as experimentally established. As conventionally defined, the positron too
is predicted to experience gravitational attraction in the field of matter (because
its energy is positive).

However, as we shall see in Chapter 4, the isodual electron is predicted to
experience antigravity when immersed in the field of matter, and this illustrates
again the rather profound physical differences between the “positron” and the
“isodual electron”.

Note that, in view of their truly elementary character, isodual electrons are the
ideal candidates for the measurement of the gravitational field of antiparticles.

2.3.12 Protons and their Isoduals
The next particles demanding comments are the proton p+, the antiproton p−

and the isodual proton p+d. In this case the differences between the “antiproton”
and the “isodual proton” should be kept in mind to avoid major inconsistencies
with the isodual theory, such as the study of the possible antigravity for antipro-
tons in the field of matter which antigravity cannot exist for the isodual theory
(due, again, to the positive mass of the antiproton).
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Note that these particles are not elementary and, as such, they are not admitted
by Definition 2.3.1. moreover, as stressed earlier [18], when represented in term of
quark conjectures both the proton and the antiproton cannot admit any gravity
at all, let alone antigravity. As a result, extreme scientific care should be exercised
before extending to all antimatter any possible gravitational measurements for
antiprotons.

2.3.13 The Hydrogen Atom and its Isodual
The understanding of this chapter requires the knowledge that studies con-

ducted on the antihydrogen atom (see, e.g., the various contributions in Pro-
ceedings [19]), even though evidently interesting per se, have no connection with
the isodual hydrogen atom, because the antihydrogen atom has positive mass,
for which antigravity is prohibited, and emits conventional photons. Therefore,
it is important to inspect the differences between these two formulations of the
simplest possible atom of antimatter.

We assume as exactly valid the conventional quantum mechanical theory of
bound states of point-like particles at large mutual distances,6 as available in
quantum mechanical books so numerous to discourage even a partial listing.

For the case of two particles denoted with the indices 1, 2, the total state in
the Hilbert space is the familiar tensorial product of the two states

|ψ >= |ψ1 > ×|ψ2 > . (2.3.68)

The total Hamiltonian H is the sum of the kinetic terms of each state plus the
familiar interaction term V (r) depending on the mutual distance r,

H = p1 × p1/2×m1 + p2 × p2/2×m2 + V (r). (2.3.69)

The total angular momentum is computed via the familiar expressions for
angular momenta and spins

J = J1 × I + I × J2, S = S1 × I + I × S2, (2.3.70)

where the I’s are trivial units, with the usual rules for couplings, addition, etc.
One should note that the unit for angular momenta is three-dimensional while
that for spin has a generally different dimension.

A typical example of two-body bound states of particles is the hydrogen atom
that experiences attraction in the gravitational field of matter with the well es-
tablished emission of conventional photons.

6We are here referring to the large mutual distances as occurring in the atomic structure and exclude the
short mutual distances as occurring in the structure of hadrons, nuclei and stars since a serious study
of the latter is dramatically beyond the capabilities of quantum mechanics, as shown beyond scientific
doubt in Chapter 3.
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The study of bound states of point-like isodual particles at large mutual dis-
tances is an important part of isodual quantum mechanics. These bound states
can be studied via an elementary isoduality of the corresponding bound states
for particles, that is, via the use of the isodual Hilbert spaces Hd studied earlier.

The total isodual state is the tensorial product of the two isodual states

|ψd(rd) >d= |ψd
1(rd) >d ×d|ψd

2(rd) >d= − < ψ1(−r)|× < ψ2(−r)|. (2.3.71)

The total isodual Hamiltonian is the sum of the isodual kinetic terms of each
particle plus the isodual interaction term depending on the isodual mutual dis-
tance,

Hd = pd
1 ×d pd

1/
d2d ×d md

1 + pd
2 ×d pd

2/
d2d ×d md

2 + V d(rd). (2.3.72)

The total isodual angular momentum is based on the expressions for isodual
angular momenta and spin

Jd = Jd
1 ×d Id + Id ×d Jd

2 , (2.3.73a)

Sd = Sd
1 ×d Id + Id ×d Sd

2 , (2.3.73b)

The remaining aspects (couplings, addition theory of angular momenta, etc.)
are then given by a simple isoduality of the conventional theory that is here
omitted for brevity.

Note that all eigenvalues that are positive for the conventional case measured
with positive units become negative under isoduality, yet measured with negative
units, thus achieving full equivalence between particle and antiparticle bound
states.

The simplest possible application of the above isodual theory is that for the
isodual hydrogen atom (first worked out in Ref. [18]). The novel predictions of
isoduality over that of the antihydrogen atom is that the isodual hydrogen atom
is predicted to experience antigravity in the field of matter and emits isodual
photons that are also repelled by the gravitational field of matter.

2.3.14 Isoselfdual Bound States
Some of the most interesting and novel bound states predicted by the isodual

theory are the isoselfdual bound states, that is, bound states that coincide with
their isodual image. The simplest case is the bound state of one elementary
particle and its isodual, such as the positronium.

The condition of isoselfduality requires that the basic symmetry must be itself
isoselfdual, e.g., for the nonrelativistic case the total symmetry must be

GTot = G(3.1)×Gd(3.1), (2.3.74)
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where × is the Kronecker product (a composition of states thus being isoselfdual),
with a simple relativistic extension here assumed as known from the preceding
sections.

The total unit must also be isoselfdual,

ITot = I × Id, (2.3.75)

where I represents the space, time and spin units.
The total Hilbert space and related states must also be isoselfdual,

HTot = H×Hd, (2.3.76a)

|ψ >Tot= |ψ > +|ψ >d= |ψ > − < ψ|, (2.3.76b)

and so on.
A main feature is that isoselfdual states exist in both the spacetime of particles

and that of antiparticles. Therefore, the computation of the total energy must
be done either in H, in which case the total energy is positive, or in Hd, in which
case the total energy is negative.

Suppose that a system of one elementary particle and its isodual is studied in
our laboratory of matter. In this case the eigenvalues for both particle and its
isodual must be computed in H, in which case we have the equation

i× ∂t|ψ >= (p× p/2×m)× |ψ > +

+(pd ×d pd/d2d ×d md)×d |ψ > +V (r)× |ψ > =

= [p× p/2×m+ V (r)]× |ψ >= E × |ψ >, (2.3.77)

under which the total energy E is evidently positive.
When the same isoselfdual state is detected in the spacetime of antimatter, it

must be computed with respect to Hd, in which case the total energy is negative,
as the reader is encouraged to verify.

The total angular momentum and other physical characteristics are computed
along similar lines and they also result in having positive values when computed
in H, as occurring for the conventional charge conjugation.

As we shall see shortly, the positive character of the total energy of bound states
of particles and their antiparticles is crucial for the removal of the inconsistencies
of theories with negative energy.

The above properties of the isoselfdual bound states have the following impli-
cations:

1) Isoselfdual bound states of elementary particles and their isoduals are pre-
dicted to be attracted in both, the gravitational field of matter and that of an-
timatter because their total energy is positive in our world and negative in the
isodual world. This renders necessary an experimental verification of the gravita-
tional behavior of isoselfdual bound states, independently from that of individual
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antiparticles. Note that the prediction holds only for bound states of truly el-
ementary particles and their isoduals, such as the positronium. No theoretical
prediction for the muonium and the pionium is today feasible because the unset-
tled nature of their constituents.

2) Isoselfdual bound states are predicted to have a null internal total time
t + td = 0 and therefore acquires the time of the matter or antimatter in which
they are immersed, although the physical time t of the observer (i.e., of the bound
state equation) is not null. This is readily understood by noting that the quantity
t of Eq. (2.3.77) is our own time, i.e., we merely study the behavior of the state
with respect to our own time. A clear understanding illustrated previously with
the “isodual cube” of Section 2.1 is that the description of a state with our own
time, by no means, implies that its intrinsic time necessarily coincides with our
own. Note that a similar situation occurs for the energy because the intrinsic
total energy of the positronium is identically null, E + Ed = 0. Yet the energy
measured by us is Epart. −Ed

antipart. = 2E > 0. A similar situation occurs for all
other physical quantities.

3) Isoselfdual bound states may result in being the microscopic image of the
main characteristics of the entire universe. Isoselfduality has in fact stimulated
a new cosmology, the isoselfdual cosmology [21] studied in Chapter 5, that is
patterned precisely along the structure of the positronium or of Dirac’s equation
in our isoselfdual re-interpretation. In this case the universe results in having
null total physical characteristics, such as null total energy, null total time, etc.,
thus implying no discontinuity at its creation.

2.3.15 Resolution of the Inconsistencies of Negative
Energies

The treatment of antiparticles with negative energies was rejected by Dirac
because of incompatibility with their physical behavior. Despite several attempts
made during the 20-th century, the inconsistencies either directly or indirectly
connected to negative energies have remained unresolved.

The isodual theory of antimatter resolves these inconsistencies for the reason
now familiar, namely, that the inconsistencies emerge when one refers negative
energies to conventional numbers with positive units, while the same inconsisten-
cies cannot be evenly formulated when negative energies are referred to isodual
numbers and their negative units.

A good illustration is given by the known objection according to which the
creation of a photon from the annihilation of an electron-positron pair, with
the electron having a positive energy and the positron having a negative energy,
would violate the principle of conservation of the energy.

In fact, such a pair could be moved upward in our gravitational field without
work and then annihilated in their new upward position. The resulting photon
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would then have a blueshift in our gravitational field of Earth, thus having more
energy than that of the original photon.

Presumed inconsistencies of the above type cannot be even formulated within
the context of the isodual theory of antimatter because, as shown in the preceding
section, the electron-positron state is isoselfdual, thus having a non-null positive
energy when observed in our spacetime. Consequently, the lifting upward of the
pair does indeed require work and no violation of the principle of conservation of
the energy can be expected.

A considerable search has established that all other presumed inconsistencies
of negative energy known to the author cannot even be formulated within the
context of the isodual theory of antimatter. Nevertheless, the author would be
particularly grateful to any colleague who brings to his attention inconsistencies
of negative energies that are really applicable under negative units.

2.4 THEORETICAL PREDICTIONS OF
ANTIGRAVITY

2.4.1 The Problem for Studies on Antigravity: Ethical
Decay in Physics

Antigravity is one of the most ancient dreams of mankind, that has stimulated
the imagination of many researchers, from various engineering fields (see, e.g.,
Refs. [35, 36] that also list patents), to the most advanced branches of physics
(see the prediction of antigravity in supergravity theories [37, 38] and proceedings
[19] for other more recent approaches).

Unfortunately, professional theoretical and experimental research in antigrav-
ity has been opposed, disrupted, or jeopardized by organized academic, financial
and ethnic interests on Einsteinian doctrines on grounds that antigravity is not
predicted by said doctrines. However, as we known to experts in order to qualify
as such, and as established beyond credible doubt in this volume, Einsteinian
doctrines do not allow a consistent classical representation of antimatter.

Hence, any opposition, obstruction, of dismissal of antigravity based on Ein-
steinian doctrines is sheer scientific corruption for personal gains that must be
denounced by any scientist who really cares about scientific knowledge and human
dignity.

A comprehensive study of antigravity was conducted by the author in mono-
graph [34]. In this chapter we essentially present an update of the content of Ref.
[34].

An experiment on the gravity of antiparticles was considered by Fairbank and
Witteborn [39] via low energy positrons in vertical motion. Unfortunately, the
measurements could not be completed because of claimed interferences from stray
fields, excessive upward kinetic energy of the positrons, and other reasons.
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There are insistent rumors that the experiment by Fairbank and Witteborn
could not be completed because of disruptions by said organized interests at SLAC
and elsewhere, particularly in view of a growing expectation that the experiment
could indeed establish antigravity between matter and antimatter, thus cutting
out of the desired dominance by Einsteinian doctrines what could amount as
being half of the universe,

. The author recommends a senatorial investigation of the case to ascertain
the reasons for the lack of completion at SLAC of so important an experiment, in
view of its feasibility with available technologies, as well as moderate cost, while
dramatically more expensive experiments fully aligned with Einsteinian doctrines
were preferred at SLAC and elsewhere, and remain preferred to this day (January
19, 2008).

In the absence of a senate investigation, the author recommends the filing of
a class action in the U. S. Federal Court against SLAC on grounds of misuses of
public funds and other easily identifiable violations of Federal laws.

As an illustration of the need for a senatorial investigation and/or legal action,
the reader in good faith should know that Burton Richter, then SLAC director,
prohibited in writing in the early 1990s Santilli (a U.S. scientist) to visit SLAC
(a U. S. federal laboratory) for the purpose of discussing a possible alternative of
the Fairbank and Witteborn experiment via a horizontal tube (see Section 2.5.2
and references quoted therein), even though Santilli had applied for a visit fully
supported by his own money and, being a theoretician, was merely looking for
suggestions by experimental colleagues.

Clearly, such a denial by Burton Richter cannot be justified on scientific
grounds, or on grounds of qualifications, since SLAC is bound by law as being
open to visits from a variety of scientists, and Santilli qualification, honors and
publications surpass most of the visitors (see Santilli CV http://www.i-b-r.org/-
Ruggero-Maria-Santilli.htm www.santilli-galilei.com www.i-b-r.org and other sources).

Hence, the denial by Burton Richter for Santilli to visit SLAC, pushed to the
extreme of perpetrating a clear violation of U. S. Federal Laws governing federal
laboratories, had strictly nonscientific motivations. The most plausible one is the
evident one, namely, the existence at SLAC and elsewhere of vociferous, orga-
nized, academic, financial and ethnic interests on Einsteinian doctrines opposing,
disrupting and jeopardizing for asocial personal gains professional research on
antigravity. At any rate, if the above, and much more evidence by other scien-
tists, is not sufficient for a senatorial investigation and/or legal action, what else
would be?

In view of the above, any consideration of experiments on the gravity between
particle and antiparticles without a senatorial and/or judicial investigation of the
past, would be a hypocritical farce acceptable by naive persons or accomplices,
but definitely not in favor of scientific knowledge. At any rate, in the event said
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organized academic, financial and ethnic interests on Einstein do not exist, a
senatorial and/or judicial process would indeed establish their lack of existence.
So, why oppose effective ways for their dismissal?

2.4.2 Outline of the Literature on Antigravity
Besides the above quoted Refs. [35, 36], [37, 38], [39], additional data on

the gravity of antiparticles are those from the LEAR machine on antiprotons
at CERN [40], although these data too are inconclusive because of the excessive
energy of the antiprotons and other factors, including the care necessary to extend
the gravity of antiprotons to all antiparticles pointed out in Chapter 2, the proved
impossibility for quarks to experience gravity, let alone antigravity, and other
factors.

Additional experiments on the gravity of antiparticles are based on neutron
interferometry, such as the experiments by Testera [41], Poggiani [42] and others.
These experiments are extremely sensitive and, as such, definite and conclusive
results continue to be elusive. In particular, the latter experiments too deal with
antiprotons, thus inheriting the ambiguities of quark conjectures with respect to
gravity, problems in the extension to other antiparticles, and other open issues.

All further data on the gravity of antiparticles known to this author are of
indirect nature, e.g., via arguments based the equivalence principle (see, e.g.,
Ref. [33] and papers quoted therein). Note that the latter arguments do not
apply under isoduality and will not be considered further.

A review on the status of our knowledge prior to isodual theories is available
in Ref. [43], that includes an outline of the arguments against antigravity, such
as those by Morrison, Schiff and Good. As we shall see, the latter arguments too
cannon even be formulated under isodualities, let alone be valid.

We can therefore conclude by stating that at this writing there exists no ex-
perimental or theoretical evidence known to this author that is resolutory and
conclusive either against or in favor of antigravity.

One of the most intriguing predictions of isoduality is the existence of anti-
gravity conceived as a reversal of the gravitational attraction, first theoretically
submitted by Santilli in Ref. [44] of 1994.

The proposal consists of an experiment that is feasible with current technolo-
gies and permits a definite and final resolution on the existence or lack of the
existence of the above defined antigravity.

These goals were achieved by proposing the test of the gravity of positrons in
horizontal flight on a vacuum tube. The experiment is resolutory because, for
the case of a 10 m long tube and very low kinetic energy of the positrons (of
the order of µeV ), the displacement of the positrons due to gravity is sufficiently
large to be visible on a scintillator to the naked eye.
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Santilli’s proposal [44] was studied by the experimentalist Mills [45] to be
indeed feasible with current technology, resolutory and conclusive.

The reader should be aware from these introductory lines that the prediction
of antigravity exists, specifically, for the isodual theory of antimatter and not for
conventional treatment of antiparticles.

For instance, no prediction of antigravity can be obtained from Dirac’s hole
theory or, more generally, for the treatment of antimatter prior to isoduality, that
solely occurring in second quantization.

Consequently, antigravity can safely stated to be the ultimate test of the iso-
dual theory of antimatter.

In this chapter, we study the prediction of antigravity under various profiles,
we review the proposed resolutory experiment, and we outline some of the far
reaching implications that would follow from the possible experimental verifica-
tion of antigravity, such as the consequential existence of a fully Causal Time
Machine, although not for ordinary matter, but for an isoselfdual combination of
matter and antimatter.

2.4.3 Newtonian and Euclidean Prediction of
Antigravity

It is important to show that the prediction of antigravity can be first formulated
at the most primitive possible level, that of Newtonian mechanics and its isodual.
All subsequent formulations will be merely consequential.

The current theoretical scene on antigravity is dominated by the fact that, as
it is well known, the Euclidean, Minkowskian and Riemannian geometries offer
no realistic possibility to reverse the sign of a gravitational mass or of the energy
of the gravitational field.

Under these conditions, existing theories can at best predict a decrease of the
gravitational force of antiparticles in the field of matter (see Ref. [43] for a review
of these conventional studies). In any case the decreased interaction, as such,
remains attractive.

Isodual mathematical and physical theories alter this scientific scene. In fact,
antigravity is predicted by the interplay between the classical Euclidean geometry
and its isodual. The resulting prediction of antigravity persists at all levels, that
is, for flat and curved spaces and for classical or quantum formulations, in a fully
consistent way without known internal contradictions.

Also, antigravity is a simple consequence of Corollary 2.3.1 according to which
the observed trajectories of antiparticles under a magnetic field are the projection
in our spacetime of inverted trajectories in isodual spacetime.

Once these aspects are understood, the prediction of antigravity becomes so
simple to appear trivial. In fact, antigravity merely originates from the projection



214 RUGGERO MARIA SANTILLI

of the gravitational field of matter in that of antimatter and vice-versa. We
therefore have the following:

PREDICTION 2.4.1 [43, 5]: The existence of antigravity, defined as a gravita-
tional repulsion experienced by isodual elementary particles in the field of matter
and vice-versa, is a necessary consequence of a consistent classical description of
antimatter.

Let us begin by studying this prediction in Euclidean and isodual Euclidean
spaces. Consider the Newtonian gravitational force of two conventional (thus,
positive) masses m1 and m2

F = −G×m1 ×m2/r < 0, G,m1,m2 > 0, (2.4.1)

where G is the gravitational constant and the minus sign has been used for
similarity with the Coulomb law.

Within the context of conventional theories, the massesm1 andm2 remain pos-
itive irrespective of whether referred to a particle or an antiparticle. This yields
the well known “universal law of Newtonian attraction”, namely, the predic-
tion that the gravitational force is attractive irrespective of whether for particle-
particle, antiparticle-antiparticle or particle-antiparticle.

Again, the origin of this prediction rests in the assumption that antiparticles
exist in our spacetime, thus having positive masses, energy and time. Under
isoduality the situation is different. For the case of antiparticle-antiparticle under
isoduality we have the different law

F d = −Gd ×d md
1 ×d md

2/
drd > 0, Gd,md

1,m
d
2 < 0. (2.4.2)

But this force exists in the different isodual space and is defined with respect
to the negative unit −1. Therefore, isoduality correctly represents the attractive
character of the gravitational force between two isodual particles.

The case of particle-antiparticle under isoduality requires the projection of the
isodual particle in the space of the particle (or vice versa), and we have the law

F = −G×m1 ×md
2/r > 0, (2.4.3)

that now represents a repulsion, because it exists in our spacetime with unit +1,
and it is opposite to force (2.4.1). This illustrates antigravity as per Prediction
2.4.1 when treated at the primitive Newtonian level.

Similarly, if we project the particle in the spacetime of the antiparticle, we
have the different law

F d = −Gd ×d md
1 ×d m2/

drd < 0, (2.4.4)
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that also represents repulsion because referred to the unit −1.
We can summarize the above results by saying that the classical representation

of antiparticles via isoduality renders gravitational interactions equivalent to the
electromagnetic ones, in the sense that the Newtonian gravitational law becomes
equivalent to the Coulomb law, thus necessarily including both attraction and
repulsions.

The restriction in Prediction 2.4.1 to “elementary” isodual particles will soon
turn out to be crucial in separating science from its political conduct, and de
facto restricts the experimental verification of antigravity to positrons in the field
of Earth.

Note also that Prediction 2.4.1 is formulated for “isodual particles” and not
for antiparticles. This is due to the fact indicated in preceding sections that,
according to current terminologies, antiparticles are defined in our spacetime and
have positive masses, energy and time. As such, no antigravity of any type is
possible for antiparticles as conventionally understood.

2.4.4 Minkowskian and Riemannian Predictions of
Antigravity

It is important to verify the above prediction at the classical relativistic and
gravitational levels.

Let M(x, η,R) be the conventional Minkowskian spacetime with coordinates
x = (r, t) (as a column) and metric η = Diag.(1, 1, 1,−1) over the field of real
numbers R(n,+,×) with unit I = Diag.(1, 1, 1, 1). The Minkowski-Santilli isod-
ual space [8] is given by (Section 2.2.8)

Md(xd, ηd, Rd), xd = −xt, ηd = Diag.(−1,−1,−1,+1), (2.4.5a)

Id = Diag.(−1,−1,−1,−1). (2.4.5b)

The isodual electromagnetic field on Md(xd, ηd, Rd) is given by

F d
µν = ∂d

νA
d
µ − ∂d

µA
d
ν = −F d

νµ, µ, ν = 1, 2, 3, 4, (2.4.6)

with isodual energy-momentum tensor

T d
µν = (1d/d4d ×md)×d [F d α

µ ×d F d
αν+

+(1d/d4d)×d gd ×d F d
αβ ×d F d αβ ] = −T t

νµ, (2.4.7)

where g is a known constant depending on the selected unit (whose explicit value
is irrelevant for this study). Most importantly, the fourth component of the
isodual energy-momentum tensor is negative-definite,

T d
00 < 0. (2.4.8)
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As such, antimatter represented in isodual Minkowski geometry has negative-
definite energy, and other physical characteristics, and evolves backward in time.
It is an instructive exercise for the interested reader to prove that the results of
the Newtonian analysis of the preceding section carry over in their entirety to
the Minkowskian formulation [8].

Consider now a Riemannian space R(x, g,R) in (3+1)-dimensions with space-
time coordinates x and metric g(x) over the reals R with basic unit I =
Diag.(1, 1, 1, 1) and related Riemannian geometry as presented, e.g., in Refs.
[33, 47]. As outlined in Section 2.1.7, the isodual iso-Riemannian spaces are
given by

Rd(xd, gd, Rd) : xd = −xt, gd(xd) = −gt(−xt), (2.4.9a)

Id = Diag.(−1,−1,−1,−1). (2.4.9b)

Recall that a basic drawback in the use of the Riemannian geometry for the
representation of antiparticles is the positive-definite character of its energy-
momentum tensor.

In fact, this character causes unsolved inconsistencies at all subsequent levels of
study of antimatter, such as lack of a consistent quantum image of antiparticles.

These inconsistencies are resolved ab initio under isoduality. In fact, the isod-
ual Riemannian geometry is defined over the isodual field of real numbers Rd for
which the norm is negative-definite (Section 2.2.1).

As a result, all quantities that are positive in Riemannian geometry become
negative under isoduality, thus including the energy-momentum tensor. In par-
ticular, energy-momentum tensors in the Riemannian geometry are given by rel-
ativistic expression (2.1.49i) and, as such, they remain negative-definite when
treated in a Riemannian space.

It then follows that in the isodual Riemannian treatment of the gravity of
antimatter, all masses and other quantities are negative-definite, including the
isodual curvature tensor, Eq. (2.1.49c).

Despite that, the gravitational force between antimatter and antimatter remain
attractive, because said negative curvature is measured with a negative unit.

As it was the case at the preceding Euclidean and Minkowskian levels, the
isodual treatment of the gravitation of matter-antimatter systems requires its
projection either in our spacetime or in the isodual spacetime. This again im-
plies a negative curvature in our spacetime [8] resulting in Prediction 2.4.1 of
antigravity at the classical Riemannian level too.

2.4.5 Prediction of Antigravity from Isodual Einstein’s
Gravitation

Einstein’s gravitation is generally defined (see, e.g., Ref. [33]) as the reduction
of gravitation in the exterior problem in vacuum to pure curvature in a Rieman-
nian space R(x, g,R) with local spacetime coordinates x and metric g(x) over
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the field of real numbers R without a source, according to the celebrated field
equations

Gµν = Rµν − gµν ×R/2 = 0, (2.4.10)

where Gµν is generally referred to as the Einstein tensor, Rµν is the Ricci tensor,
and R is the Ricci scalar.

As it is well known, Einstein’s conception of gravitation as above identified does
not permit antigravity, and this occurrence has been a motivation for the absence
of serious experimental studies in the field, as indicated in Section 1.4.1.

However, we have indicated in preceding chapters that the problem of antigrav-
ity cannot be confidently formulated, let alone treated, in Einstein’s gravitation,
due to the impossibility of consistently treating antimatter.

As indicated earlier, the only possible formulation of antimatter is that by only
changing the sign of the charge. However, this formulation is inconsistent with
quantization since it leads to particles, rather than antiparticles, with the wrong
sign of the charge.

At any rate, the most important formulation of the gravity of antimatter is that
for astrophysical bodies with null total charge, as expected for an antimatter star
or an antimatter neutron star.

The impossibility for any credible treatment of antimatter is then established
by the fact that according to Einstein’s conception of gravitation the gravitational
fields equations for matter and antimatter stars with null total charge are identi-
cal.

These inconsistencies are resolved by the isodual theory of antimatter because
it implies the novel isodual field equations for antimatter defined on the isodual
Riemannian space [8] Rd(xd, gd, Rd) with local isodual spacetime coordinates
xd = −xt and isodual metric gd(xd) = −gt(−xt) over the isodual field of real
numbers Rd

Gd
µν = Rd

µν − gd
µν ×Rd/d2d = 0. (2.4.11)

The latter representation is based on a negative-definite energy-momentum
tensor, thus having a consistent operator image, as shown in Chapter 3.

We, therefore, conclude this analysis with the following:

THEOREM 2.4.1 : Antigravity is a necessary and sufficient condition for the
existence of a classical formulation of antimatter compatible with its operator
counterpart.

Proof. Assume the validity of Einstein’s gravitation for matter and its isodual
for antimatter. Then, the former has a positive curvature tensor and the latter
has a negative curvature tensor.

Therefore, the projection of the gravitational field of antimatter in the space-
time of matter implies a negative curvature tensor in our spacetime, namely,
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antigravity, or, vice-versa, a positive curvature tensor in the isodual spacetime,
that is also repulsive, and this proves the sufficiency. The necessity comes from
the fact that the only formulation of antimatter compatible with operator coun-
terparts is that based on negative energies and masses.

In turn, geometric formulations of negative energies and masses necessarily
imply, for consistency, a negative curvature tensor. Still in turn, when projected
in the space of matter, a negative curvature necessarily implies antigravity and
the same occurs for the projection of matter in the field of antimatter. q.e.d.

2.4.6 Identification of Gravitation and
Electromagnetism

In addition to the above structural inability by Einstein’s equations (2.4.10)
to represent antimatter, Einstein’s gravitation is afflicted by a litany of inconsis-
tencies for the treatment of matter itself studied in Section 1.4 whose resolution
requires a number of structural revisions of general relativity.

It is important to show that the prediction of antigravity, not only persists,
but it is actually reinforced for gravitational theories resolving the inconsistencies
of Einstein’s gravitation.

The first catastrophic inconsistency of Einstein’s gravitation crucial for the
problem of antigravity is that of Theorem 1.4.1 on the irreconcilable incompati-
bility between Einstein’s lack of source in vacuum and the electromagnetic origin
of mass.

As stressed in Section 1.4, this inconsistency is such that, either one assumes
Einstein’s gravitation as correct, in which case quantum electrodynamics must
be reformulated from its foundation to prevent a first-order source in vacuum,
or one assumes quantum electrodynamics to be correct, in which case Einstein’s
gravitation must be irreconcilably abandoned.

The second catastrophic inconsistency of Einstein’s gravitation is that of The-
orem 1.4.2 identifying the incompatibility of field equations (2.4.10) and the for-
gotten Freud identity of the Riemannian geometry,

Rα
β −

1
2
× δα

β ×R− 1
2
× δα

β ×Θ = Uα
β + ∂V αρ

β /∂xρ = k × (tαβ + τα
β ), (2.4.12)

where
Θ = gαβgγδ(ΓραβΓρ

γβ − ΓραβΓρ
γδ), (2.4.13a)

Uα
β = −1

2
∂Θ
∂gρα

|ρ
gγβ ↑γ , (2.4.13b)

V αρ
β =

1
2
[gγδ(δα

β Γρ
αγδ − δρ

βΓρ
αδ)+

+(δρ
βg

αγ − δα
β g

ργ)Γδ
γδ + gργΓα

βγ − gαγΓρ
βγ ]. (2.4.13c)
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The latter inconsistency requires the addition in the right-hand-side of Eqs.
(2.4.10) of two source tensors for astrophysical bodies with null total charge.

As stressed in Section 1.4, the above two inconsistencies are deeply inter-related
because complementary to each other, since the inconsistency of Theorem 1.4.2
is the dynamical counterpart of the inconsistency of Theorem 1.4.2 on geometric
grounds.

A systematic study of the resolution of these inconsistencies was conducted by
Santilli [48] in 1974.

The classical gravitational formulation of antimatter can be done in the Riemannian-
Santilli isodual space Rd(xd, gd, Rd) studied in Sections 2.1.7 and 2.2.11.

To avoid catastrophic inconsistencies, the field equations of antimatter should
be compatible with the basic geometric axioms of the isodual Riemannian ge-
ometry, including, most importantly, the isodual Freud identity [8], that can be
written

Rα
β

d − 1
2

d

×d δα
β

d ×d Rd − 1
2

d

×d δα
β

d ×d Θd = kd ×d (T dα
β + Υdα

β ). (2.4.14)

with corresponding isodualities for Eqs. (2.4.13) here assumed as known.
These studies then leads to the following:

PREDICTION 2.4.2: [48] IDENTIFICATION OF GRAVITATION AND
ELECTROMAGNETISM. In the exterior problem in vacuum, gravitation coin-
cides with the electromagnetic interactions creating the gravitational mass with
field equations

GExt.
µν = Rµν − gµν ×R/2 = k × TElm

µν , (2.4.15)

where the source tensor TElm
µν represents the contribution of all charged elementary

constituents of matter with resulting gravitational mass

mGrav =
∫
d3x× TElm

00 , (2.4.16)

while in the interior problem gravitation coincides with electromagnetic interac-
tions plus short range weak, strong and other interactions creating the inertial
mass with field equations

GInt.
µν = Rµν − gµν ×R/2 = k × (TElm

µν + ΥShortRange
µν ), (2.4.17)

where the source tensor ΥShortRange
µν represents all possible short range interac-

tions in the structure of matter, with inertial mass

mInert =
∫
d3x× (TElm

00 + ΥShortRange
00 ), (2.4.18)
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and general law
mInert > mGrav. (2.4.19)

The same identification of gravitation and electromagnetism then exists for anti-
matter with field equations and mass expressions given by a simple isodual form
of the preceding ones.

A few comments are in order. All studies on the problem of “unification”
of gravitation and electromagnetism prior to Ref. [48] known to this author7

treated the two fields as physically distinct, resulting in the well known historical
failures to achieve a consistent unification dating back to Albert Einstein (see
next chapter for a detailed study). An axiomatically consistent theory emerges if
gravitation and electromagnetism are instead “identified”, as first done by Santilli
[48] in 1974.

Also, Prediction 2.4.2 implies a theory on the origin of the gravitational field,
rather than a theory providing its “description”, as available in standard treatises
such as [33]. This is due to the fact that in Prediction 2.4.2 all mass terms are
completely eliminated and replaced with the fields originating mass.

In this way, the use of any mass term in any theory is an admission of our
ignorance in the structure of the considered mass.

We should indicate for completeness that the identification of exterior gravita-
tional and electromagnetic fields appears to be disproved by the assumption that
quarks are physical constituents of hadrons, owing to the known large value of
their “masses”.

However, as indicated in Chapter 1, gravitation solely exists in our spacetime
and cannot be consistently extended to mathematical unitary symmetries. Also,
the only masses that can consistently create gravitation are those defined in our
spacetime, thus necessarily being the eigenvalues of the second-order Casimir
invariant of the Poincaré symmetry.

Since quarks cannot be defined in our spacetime, they cannot be consistently
characterized by the Poincaré symmetry and their masses are not the eigenvalues
of the second-order Casimir invariant of the latter symmetry, the use of quark
masses has no scientific value in any gravitational profile. This is the reason why
quark “masses” have been ignored in Ref. [48] as well as in this chapter.

It is well established in quantum electrodynamics that the mass of the electron
is entirely of electromagnetic origin. Therefore, a gravitational theory of the
electron in which the source term solely represents the charge contribution is
incompatible with quantum electrodynamics. In fact, the latter requires the entire
reduction of the electron mass to electromagnetic fields according to Eqs. (2.4.16).

7Again, the author would appreciate the indication of similar contributions prior to 1974.
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Note in particular that, since the electron has a point-like charge, we have no
distinction between exterior and interior problems with consequential identity

mGrav
Electron ≡ mInert

Electron. (2.4.20)

When considering a neutral, extended and composite particle such as the π◦,
the absence of a source tensor of electromagnetic nature renders gravitation,
again, incompatible with quantum electrodynamics, as established in Ref. [48]
and reviewed in Section 1.4.

By representing the π◦ as a bound state of a charged elementary particle and its
antiparticle in high dynamical conditions, quantum electrodynamics establishes
the existence not only of a non-null total electromagnetic tensor, but one of such
a magnitude to account for the entire gravitational mass of the π◦ according to
Eq. (2.4.16) and gravitational mass

mGrav
π◦ =

∫
d3x× TElm

00 π◦ . (2.4.21)

Unlike the case of the electron, the π◦ particle has a very large charge distri-
bution for particle standards. Moreover, the structure of the π◦ particle implies
the additional weak and strong interactions, and their energy-momentum tensor
is not traceless as it is the case for the electromagnetic energy-momentum tensor.

Therefore, for the case of the π◦ particle, we have a well-defined difference
between exterior and interior gravitational problems, the latter characterized by
Eqs. (2.4.18), i.e.,

mInert
π◦ =

∫
d3x× (TElm

00 + ΥShortRange
00 ) > mGrav

π◦ . (2.4.22)

The transition from the π◦ particle to a massive neutral star is conceptually
and technically the same as that for the π◦. In fact, the star itself is composed
of a large number of elementary charged constituents each in highly dynamical
conditions and, therefore, each implying a contribution to the total gravitational
mass of the star as well as to its gravitational field.

The separation between exterior and interior problems, the presence of only
one source tensor for the exterior problem and two source tensors for the interior
problems, and the fact that the inertial mass is bigger than the gravitational mass
is the same for both the π◦ and a star with null total charge.

For the case of a star we merely have an increased number of elementary
charged constituents resulting in the expression [48]

mGrav
Star = Σp=1,2,3,...

∫
d3x× TElem.Constit.

00 . (2.4.23)

Note that when the star has a non-null total charge there is no need to change
field equations (2.4.15) since the contribution from the total charge is automati-
cally provided by the constituents.
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As it is well known, there exist numerous other theories on the identity as well
as the possible differentiation of gravitational and inertial masses (see, e.g., Ref.
[33]). However, these theories deal with exterior gravitational problems while the
studies here considered deal with the interior problem, by keeping in mind that
inertial masses are a strictly interior problem, the exterior problem providing at
best a geometric abstraction.

Nevertheless, one should remember that all these alternative theories are cru-
cially based on Einstein’s gravitation, while the theory presented in this section
is based on quantum electrodynamics. Therefore, none of the existing arguments
on the differences between gravitational and inertial masses is applicable to the
theory here considered.

Note finally that conventional electromagnetism is represented by a first-order
tensor, the electromagnetic tensor Fµν of type (2.2.37a) and related first-order
Maxwell’s equations (2.2.37b) and (2.2.37c).

When electromagnetism is identified with exterior gravitation, it is represented
with a second-order tensor, the energy-momentum tensor Tµν of type (2.4.7) and
related second-order field equations (2.4.15).

2.4.7 Prediction of Antigravity from the Identification
of Gravitation and Electromagnetism

Another aspect important for this study is that the identification of gravitation
and electromagnetism in the exterior problem in vacuum implies the necessary
existence of antigravity.

In fact, the identification implies the necessary equivalence of the phenomenolo-
gies of gravitation and electromagnetism, both of them necessarily experiencing
attraction and repulsion.

Note that this consequence is intrinsic in the identification of the two fields
and does not depend on the order of the field equations (that is first order for
electromagnetism and second order for gravitation as indicated earlier.

Alternatively, for the exterior problem of matter we have the field equations
on R(x, g,R) over R

GExt.
µν = Rµν − gµν ×R/2 = k × TElm

µν , (2.4.24)

in which the curvature tensor is positive, and for the exterior problem of anti-
matter we have the isodual equations on Rd(xd, gd, Rd) over Rd

Gd,Ext.
µν = Rd

µν − gd
µν ×Rd/2 = k × T d,Elm

µν , (2.4.25)

in which the curvature tensor is negative.
The prediction of antigravity, Prediction 2.4.1, follows as a trivial extension of

that of the preceding sections and occurs when the gravitational field of antimat-
ter is projected in that of matter, or vice-versa, since such a projection implies a
negative curvature in a Riemannian space that, by definition, is antigravity.
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The prediction of antigravity is so strong that it is possible to prove that
the lack of existence of antigravity would imply the impossibility of identifying
gravitation and electromagnetism.

In turn, the lack of such identification would necessary require the impossibility
for masses to have appreciable electromagnetic origin, resulting in the need for a
structural revision of the entire particle physics of the 20-th century.

2.4.8 Prediction of Gravitational Repulsion for Isodual
Light Emitted by Antimatter

Another important implication of the isodual theory of antimatter is the pre-
diction that antimatter emits a new light, the isodual light, that experiences
repulsion when in the vicinity of the gravitational field of matter, or vice-versa
[18], where the isodual electromagnetic waves emitted by antimatter are given by
Eqs. (2.3.37), i.e.,

F d
µν = ∂dAd

µ/
d∂dxνd − ∂dAd

ν/
d∂dxdµ, (2.4.26a)

∂d
λF

d
µν + ∂d

µF
d
νλ + ∂d

νF
d
λµ = 0, (2.4.26b)

∂d
µF

dµν = −Jdν . (2.4.26c)

The gravitational repulsion then emerges from the negative energy of the above
isodual waves when in the field of matter. Vice versa, electromagnetic waves emit-
ted by matter are predicted to experience antigravity when in the gravitational
field of antimatter because they have a positive energy.

Note that isodual electromagnetic waves coincide with conventional waves un-
der all known interactions except gravitation. Alternatively, the isodual electro-
magnetic waves requires the existence of antigravity at a pure classical level for
their proper identification.

In turn, the experimental confirmation of the gravitational repulsion of light
emitted by antimatter would have momentous astrophysical and cosmological
implications, since it would permit for the first time theoretical and experimental
studies as to whether far away galaxies and quasars are made up of matter or of
antimatter.

It is important in this connection to recall that all relativistic quantum field
equations admit solutions with positive and negative energies. As it is the case
for Dirac’s equations, relativistic field equations are generally isoselfdual, thus
admitting solutions with both positive and negative energies.

The former are used in numerical predictions, but the negative-energy states
are generally discarded because they are believed to be “unphysical”.

The isodual theory implies a significant revision of the interpretation of quan-
tum field theory because the solutions of relativistic equations with positive energy
are defined in our spacetime and represent particles, while the joint solutions with
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negative energy are actually defined on the isodual spacetime and represent an-
tiparticles.

This re-interpretation cannot be presented in this chapter for brevity. In fact, a
systematic study of isodual photons requires the formulation of isodual quantum
field theory that would render prohibitive the length of this chapter.

It is hoped that interested colleagues will indeed work out the proposed isodual
quantum field theory, with particular reference to the isodual re-interpretation of
advanced and retarded solutions, Green distributions, Feynman diagrams, and all
that, because of various implications, such as those in conjugation of trajectories
or in the transition from particles to antiparticles.

In closing, the reader should keep in mind that the isodual theory of antimatter
resolves all conventional inconsistencies on negative energies as well as against
antigravity (see also Section 2.3.15).

2.5 EXPERIMENTAL VERIFICATION OF
ANTIGRAVITY

2.5.1 Santilli’s Proposed Test of Antigravity for
Positrons in Horizontal Flight

By far the most fundamental experiment that can be realized by mankind
with current technologies is the measure of the gravitation of truly elementary
antiparticles, such as the positron, in the field of Earth.

Irrespective of whether the outcome is positive or negative, the experiment
will simply have historical implications for virtually all of physics, from particle
physics to cosmology for centuries to come.

If antigravity is experimentally established, the location of the experiment is
predicted to become a place of scientific pilgrimage for centuries, due to the
far reaching implications, such as the consequential existence of a Causal Time
Machine outlined later on in this chapter.

An inspection of the literature soon reveals that the problem of the gravity of
antiparticles in the field of Earth is fundamentally unsettled at this writing, thus
requiring an experimental resolution.

On theoretical grounds, all arguments based on the weak equivalence princi-
ple [33] are dismissed as inconclusive by the isodual theory of antimatter, since
the latter predicts that bound states of particles and their isoduals experience
attraction in the gravitational field of Earth.

At any rate, no argument against antigravity based on general relativity can
be considered scientifically valid without first the resolution of the catastrophic
inconsistencies of gravitation, such as those expressed by the various inconsistency
theorems of Section 1.4.

Similarly, all experiments conducted to date on the test of the gravity of an-
tiparticles not bounded to matter are equally inconclusive, to the author’s best
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knowledge.8 A direct measurement of the gravity of positrons was considered in
1967 by Fairbanks and Witteborn [39] via electrons and positrons in a vertical
vacuum tube.

However, the test could not be conducted because preliminary tests with elec-
trons discouraged the use of positrons due to excessive disturbances caused by
stray fields, impossibility of ascertaining the maximal height of the electrons, and
other problems.

Neutron interferometric measurements of the gravity of antiprotons have been
studied by Testera [41], Poggiani [42] and others. However, these experiments
are highly sophisticated, thus implying difficulties, such as those for securing
antiprotons with the desired low energies, magnetic trapping of the antiprotons,
highly sensitive interferometric measurements of displacements, and others.

A number of important proposals to text the gravity of antimatter have been
submitted to CERN and at other laboratories by T. Goldman, R. J. Hughes,
M. M. Nieto, et al. [50–53], although no resolutory measurement has been
conducted to date to the author best knowledge, perhaps in view of the excessive
ambiguities for an accurate detection of the trajectories of antiparticles under
Earth-s gravitational field in existing particle accelerators (see in this respect
Figure 2.8).

Additional important references are those studying the connection between
antigravity and quantum gravity [54–57], although the latter should be studied
by keeping in mind Theorem 1.5.2 on the catastrophic inconsistencies of quantum
gravity when realized via nonunitary structures defined on conventional Hilbert
spaces and fields.9

In view of these unsettled aspects, an experiment that can be resolutory with
existing technologies, that is, establishing in a final form either the existence of
the lack of existence of antigravity, has been proposed by Santilli in Ref. [44] of
1994.

The experiment essentially requires a horizontal vacuum tube ranging from 100
meters in length and 0.5 meter in diameter to 10 m in length and 1 m in diameter
depending on used energies, with axial collimators at one end and a scintillator
at the other end as in Figure 2.7. The proposed test then consists in:

1) Measuring the location in the scintillator of lack of gravitational displace-
ment via a collimated photon beam (since the gravitational displacement on pho-
tons at the considered distances is ignorable);

2) Measuring on the same scintillator the downward displacement due to
Earth’s gravity on an electron beam passing through the same collimators, which

8The author would appreciate being kept informed by experimentalist in the field.
9The author would like to express his sincere appreciation to T. Goldman for the courtesy of bringing
to his attention the important references [50–57] that could not be reviewed here for brevity, but whose
study is recommended as a necessary complement of the presentation of this monograph.
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downward displacement is visible to the naked eyes for sufficiently small electron
energies (for instance, we can have a downward displacement due to gravity of
5 mm, that is visible to the naked eye, for electron kinetic energies of 25 µeV
along 100 m horizontal flight, or for electrons with 2 µeV along a 10 m horizontal
flight); and

3) Measuring on the same scintillator the displacement due to Earth’s gravity
on a positron beam passing through the same collimators, which displacement is
also visible to the naked eye for positron energies of the order of a few µeV.

If the displacement due to gravity of the positrons is downward, the test would
establish the lack of existence of antigravity. On the contrary, the detection of an
upward displacement of the positrons would establish the existence of antigravity.

An alternative proposal was submitted by Santilli [20] via the use of the so-
called particle decelerator in the shape of a doughnut of a diameter of about 10 m
and 50 cm in sectional diameter (Figure 2.8). The main idea is that low energy
beams of electrons and positrons could be decelerated via the use of magnetic fields
down to the energy needed to achieve a displacement due to gravity sufficiently
larger than the dispersion to be visible to naked eye, at which point the particles
are released into a scintillator.

We have stressed throughout this presentation that the only experimental veri-
fication of the theoretical prediction of antigravity recommendable at this writing,
is that for truly elementary antiparticles in the gravitational field of matter with-
out any bound to other particles, such as an isolated beam of positrons under the
gravitation field of Earth.

Other tests of antigravity, if conducted before the above tests with positrons
and used for general claims on antigravity, can likely lead to ambiguities or a
proliferations of unnecessary controversies.

The reasons for this restriction are numerous. Firstly, the study of the gravity
of particle-antiparticle systems, such as a bound state of one electron and one
positron at large mutual distances according to quantum mechanics (QM),

Positronium = (e−, e+)QM , (2.5.1)

is strongly discouraged for a first “test of antigravity”, because all theories, in-
cluding the isodual theory, predict attraction of the positronium in the field of
matter. Therefore, under no condition can any possible experimental verification
of this prediction be used as a credible claim on the lack of existence of antigravity
at large.

Second, the above restriction eliminates the use of muons for a first test of
antigravity, because, in view of their instability and decay modes, and as studied
in detail in the next chapter, hadronic mechanics (HM) predicts that muons are a
bound state of electrons and positrons in conditions of total mutual penetrations
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Figure 2.7. A schematic view of the proposal to test the gravity of positrons suggested by
Santilli [44] in 1994 via a horizontal vacuum tube with a scintillator at the end in which a
collimated beam of photons is used to identify the point in the scintillator of no displacement
due to gravity, and collimated beams of very low energy electrons and, separately, positrons are
used to measure displacements due to gravity. The latter are indeed visible to the naked eye for
sufficiently low kinetic energy of the order of a few µeV. Santilli’s proposal [44] was studied by
the experimentalist J. P. Mills, jr. [45], as reviewed in the next section.

of their wavepackets at very short mutual distances,

µ± = (e−, e±, e+)HM , (2.5.2)

with consequential highly nonlocal effects structurally beyond any credible treat-
ment by quantum mechanics. Under this structure, both muons and antimuons
are predicted to experience gravitational attraction only because the possible anti-
gravity of the positron is expected to be less than the gravity of basic electron-
positron system.

A similar restriction applies against the use of mesons for first tests of antigrav-
ity because they are bound states of particles and antiparticles that, as such, are
predicted not to experience antigravity in the field of matter. This is particularly
the case for pions. Similarly, a first use of kaons for experiments on antigravity
can only result in unnecessary controversies in view of their unsettled structure.

Serious reservation also exist for the first use of antiprotons and antineutrons
due to their basically unsettled structure. As stressed earlier, the use of current
quark conjecture prevents antiprotons and antineutrons to have any gravity at
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Figure 2.8. A schematic view of the alternative proposal submitted for study by the author [20]
at the National High Magnetic Field Laboratory, Tallahassee, Florida, in December 1995. The
main idea is to use the established techniques for “particle accelerators” for the construction
of a “particle decelerator” that would slow down the initial energy of electron and positron
beams down to the amounts needed to produce displacement due to gravity sufficiently bigger
than the spread due to stray fields to produce a definite-resolutory answer visible to the naked
eye. Suggested dimensions of the “particle decelerator” are 10 m in diameter with a sectional
diameter of 0.5 m and two entrances-exits, one used for the entrance-exit of the electron beam
and the other for the positron beam. The study conducted by Mills [45] for the horizontal
tube indicates that the “particle decelerator” here considered is also feasible and will produce a
resolutory answer.

all, let alone antigravity, as rigorously proved by the fact indicated earlier that
gravity can only be defined in our physical spacetime while quarks can only
be defined in their internal mathematical unitary space, as well as by the lack
of credibly defines “quark masses” as inertial eigenvalues of the second order
Casimir invariant of the Poincaré group (see the Appendix of Ref. [41]).

Equally equivocal can be at this stage of our knowledge the conduction of
first gravitational measurements via the sole use of the antihydrogen atom for
intended general results on antigravity, evidently because its nucleus, the an-
tiproton, is believed to be a bound state of quarks for which no gravity at all can
be consistently defined. Any study of antigravity under these unsettled structural
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conditions can only lead to un-necessary controversies, again, if used for general
results on antigravity.

It is evident that, until baryons theories are afflicted by such fundamental
problematic aspects, as the inability even to define gravity in a credible way, no
gravitational measurement based on antiprotons and antineutrons can be credibly
used as conclusive for all of antimatter.

After the resolution of the gravitational behavior of unbounded positrons in the
field of matter, the tests for the gravitational behavior of positronium, muons,
muonium, pions, pionium, antiprotons, antineutrons, antihydrogen atom, etc.
become essential to acquire an experimental background sufficiently diversified
for serious advances on antimatter beyond the level of personal beliefs one way
or the other.

The fundamental test of the gravity of positrons here considered was proposed
by the author to the following institutions:

1) Stanford Linear Acceleration Center, Stanford, USA, during and following
the Seventh Marcel Grossmann Meeting on General Relativity held at Stanford
University in July 1994;

2) The Joint Institute for Nuclear Research in Dubna, Russia, during the
International Conference on Selected Topics in Nuclear Physics held there in
August 1994;

3) The National High Magnetic Field Laboratory in Tallahassee, Florida, dur-
ing a meeting there in 1996 on magnetic levitation;

4) CERN, Geneva, Switzerland, during a presentation there of hadronic me-
chanics;;

5) Brookhaven National Laboratories, following the participation at the Sepino
meeting on antimatter of 1996 [19];
and to other laboratories as well to universities in various countries.

It is regrettable for mankind that none of these laboratories or universities
expressed interest in even considering to date such a fundamental experiment, by
preferring to spend much bigger public funds for esoteric experiments manifestly
lesser important than that of antigravity.

2.5.2 Santilli’s Proposed Tests of Antigravity for
Isodual Light

Additionally, in 1997 Santilli [18] predicted that antimatter emits a new light,
the isodual light, that is predicted to be repelled by the gravitational field of matter,
and proposed its experimental verification as the only known (or even conceivable)
possibility of ascertaining whether far-away galaxies and quasars are made up of
matter or of antimatter.

Measurements as to whether light emitted by the antihydrogen atoms now
produced at CERN are attracted or repelled by matter is predictably more deli-
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cate than the test of the gravity of the positron, evidently because gravitational
displacements for photons in horizontal flight are extremely small, as well know,
thus requiring very sensitive interferometric and other measurements.

The experimental detection as to whether far-away galaxies and quasars are
made up of matter or of antimatter is predictably more complex and requiring
longer periods of time, but with immense scientific implications whatever the
outcome.

The test can be done in a variety of ways, one of which consists of measuring the
deflection of light originating from far away astrophysical objects when passing
near one of our planets. Comparative measurements of a sufficiently large number
of galaxies and quasars should permit the detection of possible repulsions, in the
event it exists.

Another test has been privately suggested by to the author by an astrophysicist
and consists in reinspecting all existing astrophysical data on the deflection of
light from far away galaxies and quasars when passing near-by astrophysical
bodies.

In the opinion of this astrophysicist, it appears that evidence for the repulsion
of light already exists in these data. Such a possible evidence has been ignored so
far, and, if found, could not be admitted publicly at the moment, simply because
Einstein’s gravitation does not allow for any prediction of gravitational repulsion
of light.

An understand is that, for these astrophysical measurements to be credible,
astrophysicists must conduct the study of a vary large number of galaxies and
quasars (of the order of several thousands), and the considered galaxies and
quasars must be sufficiently far away to render plausible their possible antimatter
structure.

2.5.3 Mills’ Studies of Santilli’s Proposed Tests of
Antigravity

The experimentalist J. P. Mills, jr., [45] conducted a survey of all significant
experiments on the gravity of antiparticles in the field of Earth, including indi-
rect tests based on the weak equivalence principle and direct experiments with
antiparticles, by concluding that the problem is basically unsettled on theoretical
and experimental grounds, thus requiring an experimental resolution.

After considering all existing possible tests, Mills’ conclusion is that Santilli’s
proposed test [44] on the measurement of the gravitational deflection of electrons
and positron beams of sufficiently low energy in horizontal flight in a vacuum
tube of sufficient length and shielding, is preferable over other possible tests, ex-
perimentally feasible with current technology, and providing a resolutory answer
as to whether positrons experience gravity or antigravity.
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As it is well known, a main technical problem in the realization of Santilli’s
test is the shielding of the horizontal tube from external electric and magnetic
field, and then to have a tube structure in which the internal stray fields have
an ignorable impact on the gravitational deflection, or electrons and positrons
have such a low energy for which the gravitational deflection is much bigger than
possible contributions from internal stray fields, such as the spreading of beams.

The electric field that would cancel the Earth gravitational force on an electron
is given by

E = me × g/e = 5.6× 10−11 V/m. (2.5.3)

As it is well known, an effective shielding from stray fields can be obtained via
Cu shells. However, our current understanding of the low temperature zero elec-
tric field effect in Cu shells does not seem sufficient at this moment to guarantee
perfect shielding from stray fields. Mills [45] then suggested the following conser-
vative basic elements for shielding the horizontal tube.

Assuming that the diameter of the tube is d and the shielding enclosure is
composed of randomly oriented grains of diameter λ, the statistical variation of
the potential on the axis of the tube of a diameter d would then be [45]

∆V =
λ

d×
√
π
. (2.5.4)

As expected, the effect of stray fields at the symmetry axis of the tube is in-
versely proportional to the tube diameter. As we shall see, a tube diameter of 0.5
m is acceptable, although one with 1 m diameter would give better results.

Given a work function variation of 0.5 eV, 1 µm grains and d = 30 cm, we
would have the following variation of the potential on the axis of the horizontal
tube

∆V = 1 µeV. (2.5.5)

Differences in strain or composition could cause larger variations in stray fields.
To obtain significant results without ambiguities for the shielding effect of low
temperature Cu shells, Mills [45] suggests the use of electrons and positrons with
kinetic energies significantly bigger than 1 µeV. As we shall see, this condition
is met for tubes with minimal length of 10 m and the diameter of 1 m, although
longer tubes would evidently allow bigger accuracies.

The realization of Santilli’s horizontal vacuum tube proposed by Mills [45] is the
following. As shown in Figure 2.9, the tube would be a long dewar tube, consisting
of concentric shells of Al and Mu metals, with Pb and Nb superconducting shells
and an inner surface coated with an evaporated Cu film.

There should be two superconducting shells so that they would go supercon-
ducting in sequence [Nb (9.25 K), Pb (7.196 K)], evidently for better expulsion
of flux. Trim solenoids are also recommended for use within the inner shell and
a multitude of connections to the Cu field for trimming electrostatic potentials.
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Figure 2.9. A schematic view of the realization suggested by Mills [45] of the horizontal tube
proposed by Santilli [44].

As also shown in Figure 2.9, the flight tube should be configured with an
electrostatic lens in its center for use of electron and positron beams in both
horizontal directions, as well as to focus particles from a source at one end into a
gravity deflection sensitive detector at the other end. The de Broglie wavelength
of the particles results in the position resolution

d = 2.4× π × αB ×
c× L

v ×D
, (2.5.6)

where α = 1/137 is the fine structure constant, aB = 0.529Å is the Bohr radius
of hydrogen, c is the velocity of light, v is the electron or positron velocity, L is
the length of the horizontal path, and D is the diameter of the lens aperture in
the center of the flight tube.

The vertical gravitational deflection is given by

∆y = g × L2

2× v2
. (2.5.7)
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Given L = 100 m, D = 10 cm, v/c = 10−5 (i.e., for 25 µeV particles), we have

∆y = 5 mm. (2.5.8)

For 1 meV particles the resolution becomes

∆y = 125 µm. (2.5.9)

Therefore, one should be able to observe a meaningful deflection using parti-
cles with kinetic energies well above the expected untrimmed fluctuation in the
potential.

Mills also notes that the lens diameter should be such as to minimize the
effect of lens aberration. This requirement, in turn, dictates the minimum inside
diameter of the flight tube to be 0.5 m.

The electron source should have a cooled field emission tip. A sufficient positron
source can be provided, for example, by 0.5 ci of 22Na from which we expect
(extrapolating to a source five times stronger) 3 × 107 e+/s in a one centimeter
diameter spot, namely a positron flux sufficient for the test.

Ideal results are obtained when the positrons should be bunched into pulses
of 104 e+ at the rate of 103 bunches per second. Groups of 103 bunches would
be collected into macrobunches containing 106 e+ and 20 nsec in duration. The
positrons would be removed from the magnetic field and triply brightness en-
hanced using a final cold Ni field remoderator to give bunches with 104 e+,
10 meV energy spread, an ellipsoidal emission spot 0.1 µm high and 10 µm wide
and a 1 radian divergence.

However, stray fields are notoriously weak and decrease rapidly with the dis-
tance. Therefore, there is a diameter of the vacuum tube for which stray fields are
expected to have value on the axis insufficient to disrupt the test via a spreading
of the beams. Consequently, the proposed tests is also expected to be resolu-
tory via the use of very low energy positrons as available, e.g., from radioactive
sources.

As a matter of fact, the detection in the scintillator of the same clear gravita-
tional deflection due to gravity by a few positrons would be sufficient to achieve a
final resolution, provided, of course, that these few events can be systematically
reproduced.

After all, the reader should compare the above setting with the fact that new
particles are nowadays claimed to be discovered at high energy laboratories via
the use of extremely few events out of hundreds of millions of events on record
for the same test.

The beam would then be expanded to 100 µm×1 cm cross section and a 1
mrad divergence, still at 10 meV. Using a time dependent retarding potential
Mills would then lower the energy spread and mean energy to 100 µeV with
a 2 µs pulse width. Even assuming a factor of 1,000 loss of particles due to
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imperfections in this scheme, Mills’ set-up would then have pulses of about 10
positrons that could be launched into the flight tube with high probability of
transmissions at energy of 0 to 100 µeV.

The determination of the gravitational force would require many systematic
tests. The most significant would be the measurements of the deflection as a func-
tion of the time of flight (enhance the velocity v) ∆v(e±,±v) for both positrons
and elections and for both signs of the velocity relative to the lens on the axis of
the tube, v > 0 and v < 0, the vertical gravitational force on a particle of charge
q is

Fy = −m× g + q × Ey + q × vz ×Bx/c. (2.5.10)

The deflection is then given by

∆y =
∫ L

0

∫ z′

0
q × [E(z′′) + v ×B(z′′)/c]

×dz′′ × dz′/(m× v2)− g × z2/2× v2. (2.5.11)

In lowest order, Mills neglects the transverse variation in Ey and Bx and writes
for the average fields

ε =
1
L2

∫ L

0

∫ z′

0
Ey(z′′)× dz′′ × dz′, (2.5.12)

and

β =
1
L2

∫ L

0

∫ z′

0
Bx(z′′)× dz′′ × dz′. (2.5.13)

Note that these are not simple averages, but the averages of the running av-
erages. They depend on the direction of the velocity. In the approximation that
there are not significantly different from simple averages, the average of the four
deflection ∆y for both positrons and electrons and for both signs of the velocity
is independent of ε and β and it is given by

< ∆y > = (g+ + g−)× L2

v2
. (2.5.14)

where g± refers to the gravitational acceleration of e±. Since we also have the
velocity dependence of the ∆y’s, and can manipulate E and B by means of
trim adjustments, it will be possible to unravel the gravitational effect from the
electromagnetic effect in this experiment.

In summary, the main features proposed by Mills [45] for Santilli’s [44] hori-
zontal vacuum tube are that:

1) The tube should be a minimum of 10 m long and 1 m in diameter, although
the length of 100 m (as proposed by Santilli [44]) and 0.5 m in diameter is
preferable;
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2) The tube should contain shields against internal external electric and mag-
netic fields and internal stray fields. According to Mills [45], this can be accom-
plished with concentric shells made of Al, double shells of Mu metal, double shells
of superconducting Nb and Pb, and a final internal evaporated layer of fine grain
of Cu;

3) Use bright pulsed sources of electrons and, separately, positrons, at low tem-
perature by means of phase space manipulation techniques including brightness
enhancement;

4) Time of flight and single particle detection should be tested to determine the
displacement of a trajectory from the horizontal line as a function of the particle
velocity;

5) Comparison of measurements should be done using electrons and positrons
traversing the flight tube in both directions.

The use of electrons and positrons with 25 µeV kinetic energy would yield a
vertical displacement of 5 mm at the end of 100 m horizontal flight, namely, a
displacement that can be distinguished from displacements caused by stray fields
and be visible to the naked eye, as insisted by Santilli [44].

Mills [45] then concludes by saying that “... an experiment to measure the
gravitational deflection of electrons and positrons in horizontal flight, as suggested
by R. M. Santilli, ... is indeed feasible with current technologies.... and should
provide a definite resolution to the problem of the passive gravitational field of the
positron”.

2.6 SPACETIME LOCOMOTIONS
2.6.1 Introduction

In preceding sections of this monograph we have indicated the far reaching
implications of a possible experimental verification of antigravity predicted for
antimatter in the field of matter and vice versa, such as a necessary revision of
the very theory of antimatter from its classical foundations, a structural revision
of any consistent theory of gravitation, a structural revision of any operator
formulation of gravitation, and others.

In this section we show that another far reaching implications of the experi-
mental detection of antigravity is the consequential existence of a Causal Time
Machine [46], that is the capability of moving forward or backward in time with-
out violating the principle of causality, although, as we shall see, this capability
is restricted to isoselfdual states (bound states of particles and antiparticles) and
it is not predicted by the isodual theory to be possible for matter or, separately,
for antimatter.

It should be stressed that the Causal Time Machine here considered is a math-
ematical model, rather than an actual machine. Nevertheless, science has always
surpassed predictions. Therefore, we are confident that, as it has been the cases
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for other predictions, one the Causal Time Machine is theoretically predicted,
science may indeed permits its actual construction, of course, in due time.

As we shall see, once a Causal Time Machine has been identified, the transition
to a causal SpaceTime Machine with the addition of motion in space is direct and
immediate.

2.6.2 Causal Time Machine
As clear from the preceding analysis, antigravity is only possible if antiparticles

in general and the gravitational field of antimatter, in particular, evolve backward
in time. A time machine is then a mere consequence.

Causality is readily verified by the isodual theory of antimatter for various
reasons. Firstly, backward time evolution measured with a negative unit of time
is as causal as forward time evolution measured with a positive unit of time.
Moreover, isoselfdual states evolve according to the time of the gravitational field
in which they are immersed. As a result, no violation of causality is conceivably
possible for isoselfdual states.

Needless to say, none of these causality conditions are possible for conventional
treatments of antimatter.

The reader should be aware that we are referring here to a “Time Machine,”
that is, to motion forward and backward in time without space displacement
(Figure 2.10). The “Space-Time Machine” (that is, including motion in space
as well as in time), requires the isodualities as well as isotopies of conventional
geometries studied in Chapter 3 and it will be studied in the next section.

The inability to have motion backward in time can be traced back to the
very foundations of special relativity, in particular, to the basic time-like interval
between two points 1 and 2 in Minkowski space as a condition to verify causality

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2 − (t1 − t2)2 × c2 < 0. (2.6.1)

defined on the field of real numbers R(n,×, I), I = Diag.(1, 1, 1, 1).
The inability to achieve motion backward in time then prevents the achieve-

ment of a closed loop in the forward light cone, thus including motion in space
and time, since said loop would necessarily require motion backward in time.

Consider now an isoselfdual state, such as the positronium or the π◦ meson
(Section 2.3.14). Its characteristics have the sign of the unit of the observer, that
is, positive time and energy for matter observers and negative times and negative
energies for antimatter observers. Then a closed loop can be achieved as follows
[46]:

1) With reference to Figure 2.10, expose first the isoselfdual state to a field of
matter, in which case it evolved forward in time from a point at time t1 to a point
at a later time t2 where the spacetime coordinates verify the time-like invariant
(2.6.1) with t2 > t1;
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Figure 2.10. A schematic view of the simplest possible version of the “Time Machine” proposed
in Ref. [46] via an isoselfdual state such as the positronium or the π◦ meson that are predicted
to move forward (backward) in time when immersed in the gravitational field of matter (anti-
matter). The Time Machine then follows by a judicious immersion of the same isoselfdual state
first in the fields of matter and then in that of antimatter. No causality violation is possible
because of the time evolution for isoselfdual states is that of the field in which they are immersed
in.

2) Subsequently, expose the same isoselfdual state to a field of antimatter in
which case, with the appropriate intensity of the field and the duration of the
exposure, the state moves backward in time from time t2 to the original time t1,
where the spacetime coordinates still verify invariant (2.6.1) with t2 < t1 although
in its isodual form.

We, therefore, have the following:

PREDICTION 2.6.1 [46]: Isoselfdual states can have causal motions forward
and backward in time, thus performing causal closed loops in the forward light
cone.

Note that the above causal Time Machine implies gravitational attraction for
both fields of matter and antimatter, owing to the use of an isoselfdual test
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particle, in which case we only have the reversal of the sign of time and related
unit.

Note also that the use of a particle or, separately, of an antiparticle would
violate causality.

Numerous time machines exist in the literature. However, none of them ap-
pears to verify causality and, as such, they are ignored.

Other time machines are based on exiting our spacetime, entering into a math-
ematical space (e.g., of complex unitary character), and then returning into our
spacetime to complete the loop.

Other attempts have been based on quantum tunnelling effects and other
means.

By comparison, the Causal Time Machine proposed in Ref. [46] achieves a
closed loop at the classical level without exiting the forward light cone and veri-
fying causality.10

2.6.3 Isogeometric Propulsion
All means of locomotion developed by mankind to date, from prehistoric times

all the way to current interplanetary missions, have been based on Newtonian
propulsions, that is, propulsions all based on Newton’s principle of action and
reaction.

As an example, human walking is permitted by the action generated by leg
muscles and the reaction caused by the resistance of the feet on the grounds.
The same action and reaction is also the origin of all other available locomotions,
including contemporary automobiles or rockets used for interplanetary missions.

Following the identification of the principle of propulsion, the next central issue
is the displacement that is evidently characterized by the Euclidean distance. We
are here referring to the conventional Euclidean space E(r, δ, R) over the reals
R with familiar coordinates r = (x, y, z)× I, metric δ = Diag.(1, 1, 1), units
for the three axes I = I3×3 = Diag(1 cm, 1 cm, 1 cm) hereon used in their
dimensionless form I = Diag.(1, 1, 1), and Euclidean distance that we write in
the isoinvariant form

D2 = r2 × I = (x2 + y2 + z2)× I ∈ R. (2.6.2)

The geometric locomotion can be defined as the covering of distances via the
alteration (also called deformation) of the Euclidean geometry without any use of
action and reaction . The only possible realization of such a geometric locomotion
that avoid the theorems of catastrophic inconsistencies of Section 1.5, as well as
achieves compatibility with our sensory perception (see below), is the isogeometric

10The indication by colleagues of other versions of the spacetime machine with a proved verification of
causality without existing from our spacetime would be appreciated.
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locomotion [5b] namely, that permitted by the Euclid-Santilli isogeometry and
relative isodistance.

We are here referring to the Euclid-Santilli isospace (Section 3.2) Ê(r̂, δ̂, R̂)
over the isoreals R̂ with isocoordinates r̂ = (x, y, z) × Î, metric δ̂ = T̂3×3 × δ,
isounits for the three isoaxes

Î = Î3×3 = Diag(n2
1 cm, n2

2 cm, n2
3 cm) = 1/T̂3×3 > 0 (2.6.3)

that will also be used hereon in the dimensionless form

Î = Diag.(n2
1, n

2
2, n

2
3), (2.6.4)

and isodistance that we write in the isoinvariant form11

D̂2̂ = r̂2̂ = (x2/n2
1 + y2/n2

2 + z2/n2
3)× Î ∈ R̂, (2.6.5)

in which case the deformation of the geometry is called geometric mutation.12

It is evident that D̂ can be bigger equal or smaller than D. Consequently, the
isogeometric locomotion occurs when D̂ < D, as in the example below

Î = Diag.(n2
1, 1, 1) � I = Diag.(1, 1, 1), T̂ � I, (2.6.6a)

D̂2̂ = (x2/n2
1 + y2 + z2) � D2 = (x2 + y2 + z2). (2.6.6b)

The understanding of the above locomotion requires a knowledge of the isobox
of Section 3.2. Consider such an isobox and assume that it is equipped with
isogeometric locomotion. In this case, there is no displacement at all that can
be detected by the internal observer. However, the external observer detects a
displacement of the isobox the amount x2 − x2/n2

1.
This type of locomotion is new because it is causal, invariant and occurs with-

out any use of the principle of action and reaction and it is geometric because it
occurs via the sole local mutation of the geometry.

The extension to the Causal Spacetime Machine, or spacetime isogeometric lo-
comotion is intriguing, and can be formulated via the Minkowski-Santilli isospace
of Section 3.2 with four-isodistance

D̂2̂ = (x2/n2
1 + y2/n2

2 + z2/n2
3 − c2 × t2/n2

4)× Î ∈ R̂, (2.6.7)

11By “isoinvariance” we means invariance under conventional space or spacetime symmetries plus the
isotopic invariance.
12According to the contemporary terminology, “deformations” are alterations of the original structure
although referred to the original field. As such they are afflicted by the catastrophic inconsistencies of
Section 1.5. The term “mutation”, first introduced by Santilli in Ref. [49] of 1967, is today referred to an
alteration of the original structure under the condition of preserving the original axioms, thus requiring
the formulation on isospaces over isofields that avoid said theorems of catastrophic inconsistency.
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Figure 2.11. An artistic rendering of the “Space Time Machine”, namely, the “mathematical”
prediction of traveling in space and time permitted by the isodual theory of antimatter. The
main assumption is that the aether (empty space) is a universal medium characterized by a
very high density of positive and negative energies that can coexist because existing in distinct,
mutually isodual spacetimes. Virtually arbitrary trajectories and speeds for isoselfdual states
(only) are then predicted from the capability of extracting from the aether very high densities
of positive and negative energies in the needed sequence. Discontinuous trajectories do not
violate the law of inertia, speeds much bigger than the speed of light in vacuum, and similarly
apparently anomalous events, do not violate special relativity because the locomotion is caused
by the change of the local geometry and not by conventional Newtonian motions.

where n4 > 0.
The main implications in this case is the emergence of the additional time

mutation as expected to occur jointly with any space mutation. In turn, this
implies that the isotime t̂ = t/n4 (that is, the internal time) can be bigger equal
or smaller than the time t (that of the external observer).

More specifically, from the preservation of the original trace of the metric,
isorelativity predicts that the mutations of space and time are inversely promo-
tional to each others. Therefore, jointly with the motion ahead in space there is
a motion backward in time and vice versa.

Consequently, the external observer sees the object moving with his naked eye,
and believes that the object evolves in his own time, while in reality the object
could evolve far in the past. Alternatively, we can say that the inspection of
an astrophysical object with a telescope, by no means, implies that said object
evolves with our own time because it could evolve with a time dramatically dif-
ferent than that after adjustments due to the travel time of light because, again,
light cannot carry any information on the actual time of its source.

To further clarify this important point, light cannot possibly carry information
on the time of its source because light propagates at the speed c at which there is
no time evolution.
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As a concrete example, one of the consequences of interior gravitational prob-
lems treated via Santilli’s isorelativity (see Section 3.5) is that the time of interior
gravitational problems, t̂ = t/n4, depends on the interior density n2

4, rather than
the inertial mass, thus varying for astrophysical bodies with different densities.

This implies that if two identical watches are originally synchronized with each
other on Earth, and then placed in the interior gravitational field of astrophysical
bodies with different densities, they will no longer be synchronized, thus evolving
with different times, even though light may continue to provide the information
needed for their intercommunication.

In particular, the time evolution of astrophysical bodies slows down with the
increase of the density,

t̂1 < t̂2, n2
41 > n2

42. (2.6.8)

It should also be noted that the above effect has no connection with similar
Riemannian predictions because it is structurally dependent on the change of the
units, rather than geometric features.

A prediction of isospecial relativity is that the bigger the density, the slower
the time evolution. Thus, a watch in the interior of Jupiter is predicted to move
slower than its twin on Earth under the assumption that the density of Jupiter
(being a gaseous body) is significantly smaller than that of Earth (that can be
assumed to be solid for these aspects).

As stressed in Section 2.6.1, the above spacetime machine is a purely mathe-
matical model. To render it a reality, there is the need to identify the isogeometric
propulsion, namely a source for the geometric mutations of type (2.6.5).

Needless to say, the above problem cannot be quantitatively treated on grounds
of available scientific knowledge. However, to stimulate the imagination of read-
ers with young minds of any age, a speculation on the possible mechanism of
propulsion should be here voiced.

The only source of geometric mutation conceivable today is the availability of
very large energies concentrated in very small regions of space, such as energies
of the order of 1030 ergs/cm3. Under these conditions, isorelativity does indeed
predict isogeometric locomotion because these values of energy density generate
very large values of isounits Î, with very small values of the isotopic element T̂ ,
resulting in isogeometric locomotions precisely of type (2.6.5).

The only possible source of energy densities of such extreme value is empty
space. In fact, according to current views, space is a superposition of positive
and negative energies in equal amounts each having extreme densities precisely
of the magnitude needed for isogeometric locomotion.

The speculation that should not be omitted in this section is therefore that, one
day in the future, the advancement of science will indeed allow to extract from
space at will all needed amounts of both positive and negative energy densities.



242 RUGGERO MARIA SANTILLI

In the event such an extraction becomes possible in a directional way, a space-
ship would be able to perform all desired types of trajectories, including trajec-
tories with sharp discontinuities (instantaneous 90 degrees turns), instantaneous
accelerations, and the like without any violation of the law of inertia because, as
indicated earlier, the spaceship perceives no motion at all. It is the geometry in
its surroundings that has changed.

Moreover, such a spaceship would be able to cover interstellar distances in a few
of our minutes, although arriving at destination way back in the time evolution
of the reached system.

Science has always surpassed science fiction and always will, because there is no
limit to the advancement of scientific knowledge. On this ground it is, therefore,
easy to predict that, yes, one day mankind will indeed be able to reach far away
stars in minutes.

It is only hoped that, when that giant step for mankind is achieved, the theory
that first achieved its quantitative and invariant prediction, Santilli isorelativity,
will be remembered.
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Postscript

In the history of science some basic advances in physics have been preceded by
basic advances in mathematics, such as Newtons invention of calculus and general
relativity relying on Riemannian geometry. In the case of quantum mechanics
the scientific revolution presupposed the earlier invention of complex numbers.
With new numbers and more powerful mathematics to its disposition, physics
could be lifted to explain broader and more complex domains of physical reality.

The recent and ongoing revolution of physics, initiated by Prof. Ruggero Maria
Santilli, lifting the discipline from quantum mechanics to hadronic mechanics, is
consistent with this pattern, but in a more far-reaching and radical way than
earlier liftings of physics made possible from extensions of mathematics.

Santilli realized at an early stage that basic advances in physics required in-
vention of new classes of numbers and more adequate and powerful mathemat-
ics stemming from this. His efforts to develop such expansions of mathematics
started already in 1967, and this enterprise went on for four decades. Its basic
novelties, architecture and fruits are presented in the present volume. During this
period a few dozen professional mathematicians world wide have made more or
less significant contributions to fill in the new Santilli fields of mathematics, but
the honor of discovering these vast new continents and work out their basic topol-
ogy is Santillis and his alone. These new fields initiated by Santilli made possible
realization of so-called Lie-admissible physics. For this achievement Santilli in
1990 received the honor from Estonia Academy of Science of being appointed as
mathematician number seven after world war two considered a landmark in the
history of algebra.

With regard to Sophus Lie it may be of some interest to note that the Nor-
wegian examiners of his groundbreaking doctoral thesis in 1871 were not able to
grasp his work, due to its high degree of novelty and unfamiliarity. However,
due to Lie already being highly esteemed among influential contemporary math-
ematicians at the continent, it was not an option to dismiss his thesis. As in
other disciplines, highly acknowledged after Thomas Kuhns publication of The
structure of scientific revolutions in 1962, sufficiently novel mathematics implies
some paradigmatic challenge. Therefore, it is not strange that some mathemati-
cians and physicists have experienced difficulties taking the paradigmatic leap
necessary to grasp the basics of hadronic mathematics or to acknowledge its far-
reaching implications. Such a challenge is more demanding when scientific novelty
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implies a reconfiguration of conventional basic notions in the discipline. This is,
as Kuhn noted, typically easier for younger and more emergent scientific minds.

Until Santilli the number 1 was silently taken for granted as the primary unit
of mathematics. However, as noted by mathematical physicist Peter Rowlands at
University of Liverpool, the number 1 is already loaded with assumptions, that
can be worked out from a lifted and broader mathematical framework. A partial
and rough analogy might be linguistics where it is obvious that a universal science
of language must be worked out from a level of abstraction that is higher than
having to assume the word for mother to be the first word.

Santilli detrivialized the choice of the unit, and invented isomathematics where
the crux was the lifting of the conventional multiplicative unit (i.e. conservation of
its topological properties) to a matrix isounit with additional arbitrary functional
dependence on other needed variables. Then the conventional unit could be
described as a projection and deformation from the isounit by the link provided
by the so-called isotopic element inverse of the isounit. This represented the
creation of a new branch of mathematics sophisticated and flexible enough to treat
systems entailing sub-systems with different units, i.e. more complex systems of
nature.

Isomathematics proved necessary for the lifting of quantum mechanics to had-
ronic mechanics. With this new mathematics it was possible to describe extended
particles and abandon the point particle simplification of quantum mechanics.
This proved highly successful in explaining the strong force by leaving behind
the non-linear complexities involved in quantum mechanics struggle to describe
the relation between the three baryon quarks in the proton. Isomathematics also
provided the mathematical means to explain the neutron as a bound state of
a proton and an electron as suggested by Rutherford. By means of isomathe-
matics Santilli was also able to discover the fifth force of nature (in cooperation
with Professor Animalu), the contact force inducing total overlap between the
wave packets of the two touching electrons constituting the isoelectron. This
was the key to understanding hadronic superconductivity which also can take
place in fluids and gases, i.e. at really high temperatures. These advances from
hadronic mechanics led to a corresponding lifting of quantum chemistry to hadro-
nic chemistry and the discovery of the new chemical species of magnecules with
non-valence bounds. Powerful industrial-ecological technology exploiting these
theoretical insights was invented by Santilli himself from 1998 on.

Thus, the development of hadronic mathematics by Santilli was not only mo-
tivated by making advances in mathematics per se, but also of its potential to
facilitate basic advances in physics and beyond. These advances have been shown
to be highly successful already. Without the preceding advances in mathematics,
the new hadronic technology would not have been around. The mere existence
of this technology is sufficient to demonstrate the significance of hadronic math-
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ematics. It is interesting to note that the directing of creative mathematics into
this path was initiated by a mathematical physicist, not by a pure mathematician.
In general this may indicate the particular potential for mathematical advances
by relating the mathematics to unsolved basic problems in other disciplines, as
well as to real life challenges.

In the history of mathematics it is not so easy to find parallels to the achieve-
ments made by Santilli, due to hadronic mathematics representing a radical and
general lifting, relegating the previous mathematics to a subclass of isomathe-
matics, in some analogy to taking the step from the Earth to the solar system.
However, the universe also includes other solar systems as well as galaxies.

In addition to isonumbers Santilli invented the new and broader class of genon-
umbers with the possibility of asymmetric genounits for forward vs. backward
genofields, and designed to describe and explain irreversibility, characteristic for
more complex systems of nature. Quantum mechanical approaches to biological
systems never achieved appreciable success, mainly due to being restricted by
a basic symmetry and hence reversibility in connected mathematical axioms. It
represented an outstanding achievement of theoretical biology when Chris Illert in
the mid-1990s was able to find the universal algorithm for growth of sea shells by
applying hadronic geometry. Such an achievement was argued not to be possible
for more restricted hyperdimensional geometries as for example the Riemannian.
This specialist study in conchology was the first striking illustration of the po-
tency as well as necessity of iso- and genomathematics to explain irreversible
systems in biology.

Following the lifting from isomathematics to genomathematics, Santilli also
established one further lifting, by inventing the new and broader class of hyper-
structural numbers or Santilli hypernumbers. Such hypernumbers are multival-
ued and suitable to describe and explain even more complex systems of nature
than possible with genonumbers. Due to its irreversible multivalued structure
hypermathematics seems highly promising for specialist advances in fields such
as genetics, memetics and communication theory. By the lifting to hypermathe-
matics hadronic mathematics as a whole may be interpreted as a remarkable step
forward in the history of mathematics, in the sense of providing the essential and
sufficiently advanced and adequate tools for mathematics to expand into disci-
plines such as anthropology, psychology and sociology. In this way it is possible
to imagine some significant bridging between the two cultures of science: the hard
and the soft disciplines, and thus amplifying a tendency already represented to
some extent by complexity science.

The conventional view of natural scientists has been to regard mathematics as
a convenient bag of tools to be applied for their specific purposes. Considering
the architecture of hadronic mathematics, this appears more as only half of the
truth or one side of the coin. Besides representing powerful new tools to study
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nature, hadronic mathematics also manifests with a more intimate and inherent
connection to physics (and other disciplines), as well as to Nature itself. In this
regard hadronic geometry may be of special interest as an illustration:

Isogeometry provided the new notions of a supra-Euclidean isospace as well
as its anti-isomorphic isodual space, and the mathematics to describe projec-
tions and deformations of geometrical relations from isospace and its isodual into
Euclidean space. However, these appear as more than mere mathematical con-
structs. Illert showed that the universal growth pattern of sea shells could be
found only by looking for it as a trajectory in a hidden isospace, a trajectory
which is projected into Euclidean space and thereby manifest as the deformed
growth patterns humans observe by their senses. Further, the growth pattern of
a certain class of sea shells (with bifurcations) could only be understood from the
addition and recognition of four new, non-trivial time categories (predicted to be
discovered by hadronic mechanics) which manifest as information jumps back and
forth in Euclidean space. With regard to sea shell growth, one of this non-trivial
time flows could only be explained as a projection from isodual spacetime. This
result was consistent with the physics of hadronic mechanics, analyzing masses
at both operator and classical level from considering matter and anti-matter (as
well as positive and negative energy) to exist on an equal footing in our universe
as a whole and hence with total mass (as well as energy and time) cancelling
out as zero for the total universe. To establish a basic physical comprehension of
Euclidean space constituted as a balanced combination of matter and antimatter,
it was required to develop new mathematics with isonumbers and isodual num-
bers basically mirroring each other. Later, corresponding anti-isomorphies were
achieved for genonumbers and hypernumbers with their respective isoduals.

Thus, there is a striking and intimate correspondence between the isodual
architecture of hadronic mathematics and the isodual architecture of hadronic
mechanics (as well as of hadronic chemistry and hadronic biology). Considering
this, one might claim that the Santilli inventions of new number fields in math-
ematics represent more than mere inventions or constructs, namely discoveries
and reconstructions of an ontological architecture being for real also outside the
formal landscapes created by the imagination of mathematics and logic. This
opens new horizons for treating profound issues in cosmology and ontology.

One might say that with the rise of hadronic mathematics the line between
mathematics and other disciplines has turned more blurred or dotted. In some
respect this represents a revisit to the Pythagorean and Platonic foundations
of mathematics in the birth of western civilization. Hadronic mathematics has
provided much new food for thought and further explorations for philosophers of
science and mathematics.

If our civilization is to survive despite its current problems, it seems reasonable
to expect Santilli to be honored in future history books not only as a giant in
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the general history of science, but also in the specific history of mathematics.
Hadronic mathematics provided the necessary fuel for rising scientific revolutions
in other hadronic sciences. This is mathematics that matters for the future of
our world, and hopefully Santillis extraordinary contributions to mathematics
will catch fire among talented and ambitious young mathematicians for further
advances to be made. The present mellowed volume ought to serve as an excellent
appetizer in this regard.

Professor Stein E. Johansen
PhD philosophy, DSc economics Institute for Basic Research, USA,
Division of Physics
Norwegian University of Science and Technology
Department of Social Anthropology
October 8, 2007
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Isodual Poincaré symmetry, 186
Isodual power, 165
Isodual product, 163
isodual proton, 202
isodual protons, 205
Isodual quantization, 192
isodual quantum field theory, 224
Isodual quotient, 165
Isodual real numbers, 165
Isodual Riemannian geometry, 172
isodual Riemannian geometry, 216, 219
Isodual Riemannian space, 173
isodual Riemannian space, 217
Isodual Schrödinger equation, 195
isodual space, 214
isodual spacetime, 213, 216, 224
isodual spacetime coordinates, 217
isodual spacetime inversions, 188
Isodual special relativity, 185
Isodual sphere, 171
Isodual square root, 165
isodual theories, 212
isodual theory, 217, 223, 235
isodual theory of antimatter, 213, 224, 236
Isodual theory of antiparticles, 174
Isodual time, 175
Isodual trigonometric functions, 167
Isodual unit, 163
isodual waves, 223
Isoduality, 199
isoduality, 212, 214
Isofields, 167
isogeometric locomotion, 239, 241
isogeometric propulsion, 241

isoinvariance, 239
isoinvariant, 239
isorelativity, 240
isoselfdual, 213
isoselfdual state to a field of antimatter, 237
Isoselfdual states, 207
isoselfdual states, 235–237
Isoselfdual symmetry, 166
isoselfdual test particle, 238
Isoselfduality, 195
isospecial relativity, 241
isotime, 240
isotopic invariance, 239
isotopies of conventional geometries, 236

Jupiter, 241

Lagrange-Santilli isodual equations, 180
Lie-Santilli isodual theory, 169

mesons, 227
Mills, 213
Mills, jr, 230
Mills, jr., 233
Minkowski space, 236
Minkowski-Santilli isodual space, 215
Minkowski-Santilli isospace, 239
Minkowskian formulation, 216
Minkowskian geometry, 213
Minkowskian spacetime, 215
muons and antimuons, 227

National Magnetic Field Laboratory in Talla-
hassee, 229

Negative energies, 209
negative energies, 224, 236
negative energies and masses, 218
Newton-Santilli isodual equations, 178
Nieto, 225
nuclear physics, 229

particle decelerator, 226
Photons, 203
pions, 227
Poggiani, 212, 225
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